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Abstract
We study the quantization of many-body systems in three dimensions in rotating
coordinate frames using a gauge invariant formulation of the dynamics. We
consider reference frames defined by linear gauge conditions, and discuss their
Gribov ambiguities and commutator algebra. We construct the momentum
operators, inner product and Hamiltonian in those gauges, for systems with
and without translation invariance. The analogy with the quantization of non-
Abelian Yang–Mills theories in non-covariant gauges is emphasized. Our
results are applied to quasi-rigid systems in the Eckart frame.

PACS numbers: 31.15.−p, 03.65.Ca, 11.15.Kc, 24.10.Cn

1. Introduction

The problem of quantizing a many-body mechanical system in a rotating reference frame is of
interest both by itself and for its possible applications to specific problems in, e.g., molecular
and nuclear physics. In this paper, we study the quantization of many-body systems in three
dimensions in rotating coordinate frames, using a gauge-invariant formulation. The two-
dimensional case was considered in a previous paper [1], in which the method was developed
in detail and a close parallel with the quantization of electrodynamics in non-covariant gauges
established. The main lines of the method are the same in both cases. Due to the non-
Abelianity of the rotation group in three dimensions, however, the technical treatment of the
systems considered here is considerably different from the planar case, the differences being
already apparent at the Lagrangian level as discussed in the following section.

We consider systems of N spinless particles interacting through central potentials. Since
the underlying dynamics are rotationally symmetric, the coordinate transformation from a
space-fixed reference frame to a rotating one with the same origin is a time-dependent
symmetry transformation, or gauge transformation. If the dynamics are described in terms of
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a gauge-invariant action, since we know how to quantize a mechanical system in a space-fixed
coordinate frame, we can perform a gauge transformation in order to obtain the quantum
theory in a rotating frame. Gauge invariance implies that both theories are physically
equivalent.

Rotating frames are often defined implicitly, by restrictions on the trajectories of the
system in that frame. In the gauge-invariant approach to the quantization in rotating frames,
such restrictions are incorporated into the theory as gauge conditions. The action is then
given in terms of degrees of freedom that are not independent, but must satisfy certain
functional relations. This situation is familiar from the theory of gauge fields [2, 3],
where the vector potential A(t,x) may be required to satisfy such relations as ∇ · A = 0
(Coulomb gauge), or n · A = 0 (axial gauge), at all times t. In this paper, we consider only
gauge conditions depending linearly on the particles coordinates, which are most useful in
practical applications involving perturbative expansions. We do not consider quadratic gauge
conditions, in particular, because we expect the formalism in those gauges to be considerably
more complicated, in view of the results of [1] in the simpler two-dimensional, Abelian case.
Furthermore, the quadratic gauge conditions most common in the literature [4, 5] are those
defining the instantaneous principal axes frame, in which the total angular momentum of the
system is strongly coupled to the other degrees of freedom through the inertia tensor and the
Coriolis terms. Without a strong physical motivation for quadratic gauges, we have no reason
to pursue that technically more involved approach here. As discussed in [1], however, there
is no problem of principle to deal with those and other kinds of gauge conditions within the
formalism espoused in this paper.

We closely follow the approach to non-Abelian Yang–Mills theories in non-covariant
gauges of [2, 6], stressing throughout the paper the strict formal similarity between our results
for many-body systems and the corresponding ones in [6] for Yang–Mills theories. Our goals
are both to illustrate the formalism of gauge theories in the more familiar context of mechanical
systems, and to apply the gauge-theoretical techniques to the quantization of three-dimensional
N-body systems in rotating frames. Previous treatments of the latter problem within a gauge-
invariant approach have been given in [4] and references therein. A gauge theory of rotations
and internal motions of deformable bodies, including classical and quantum N-body systems,
is developed in [7] (see also [8]) from a point of view different from ours. Non-gauge-invariant
treatments can be found, e.g., in [5] in the context of nuclear physics, and in [9, 10] in molecular
physics.

The outline of the paper is as follows. In section 2, we describe the class of systems to be
considered throughout the paper, and their formulation in terms of a Lagrangian invariant under
time-dependent rotations. Their quantization in a space-fixed frame is given, and shown to be
equivalent to the non-gauge-invariant formulation. The central results of the paper are given
in section 3, where we consider the quantization in rotating frames defined by linear gauge
conditions. We discuss in detail the commutator algebra for both linear and angular momentum
operators, and give explicit realizations of that algebra in terms of differential operators. Those
operators are used to construct the Hamiltonian in terms of position vectors referred to the
rotating frame, and their conjugate momenta. The elimination of orientational degrees of
freedom from the formalism is subsequently carried out, and the resulting Hamiltonian and its
Weyl-ordered form and related quantum potential are obtained. As emphasized throughout,
by describing a many-body system from a rotating frame defined by gauge conditions, we are
introducing orthogonal curvilinear coordinates in configuration space. The singularities of
those coordinates occur at the Gribov horizons where the gauge conditions become ambiguous.
Gribov ambiguities [11, 6, 3, 1] are discussed in detail in relation to the construction of the
inner product in the reduced state-space of the system.
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In section 4, we extend the results of section 3 to translation-invariant systems. We
show how the gauge-invariant approach can be used to describe a mechanical system in a
reference frame in an arbitrary state of rotation and translation. In particular, we obtain explicit
results for the quantization of N-body systems in rotating frames with origin at the centre of
mass. Those results are then applied to quasi-rigid systems in the Eckart frame [12, 9, 1] in
section 5, where two simple three- and four-body examples are briefly discussed. In
section 6, we give our final remarks. Some complementary material is gathered in the
appendices.

2. N-particle system

We consider a system of N spinless particles with central interactions in three dimensions,
described by the Lagrangian

L = LN + Lrt LN = 1

2

N∑
α=1

mαṙ2
α − V

(1)

V =
N∑

α<β=1

Vαβ(|rα − rβ |) +
N∑

α=1

U(rα) Lrt = I
2

( ê ∧ ˙̂e)2 = I
2

˙̂e
2

ê · ê = 1.

The potential energy V is chosen for concreteness to include only one- and two-body
interactions. Our results do not depend on that fact and apply equally well to more general
rotationally invariant potentials. If the one-body potential U = 0,L is invariant under the
group of Euclidean motions of three-dimensional space. In this and the following sections, we
consider U �= 0 and focus on the non-Abelian group of three-dimensional rotations, deferring
the discussion of translation invariance until section 4. Besides the kinetic and potential energy
for the N-particle system L also contains the Lagrangian Lrt for a free rigid rotator, described
by a unit vector ê. This rotator is not coupled to the particle system, so it does not affect its
dynamical evolution. Lrt can be made to vanish by letting the rotator’s inertia moment I → ∞
while keeping constant the magnitude of its angular momentum s = Iê ∧ ˙̂e. Whereas Lrt

does not play any role in L as given in (1), it will serve as a source of angular momentum for
the particle system in the gauge-invariant formulation to which we now turn.

L is invariant under time-independent rotations of the coordinate frame. In order to make
L invariant under changes of arbitrarily rotating coordinate frames we apply the Yang–Mills
construction [13] to (1). We introduce a 3 × 3 real antisymmetric matrix ξ, thus adding three
new degrees of freedom to the system, and postulate the following transformation laws under
rotations of the coordinate frame,

r′
α = Urα ê ′ = Uê ξ′ = UξU † + U̇U † (2)

with U a time-dependent real orthogonal matrix and U † its transpose. These are the gauge
transformations of the system. We define the covariant time derivative Dtrα ≡ ṙα−ξrα , which
transforms like a vector under gauge transformations, (Dtrα)′ = U (Dtrα). Analogously,
Dt ê = ˙̂e − ξê. We can, equivalently, use instead of the matrix ξ the axial vector ξ̃ dual to
ξ, ξik = εijkξ̃j , whose gauge transformations can be derived from (2). In terms of ξ̃, covariant
derivatives take the form Dtrα = ṙα − ξ̃∧rα . Substituting time derivatives in (1) by covariant
derivatives we obtain a Lagrangian invariant under time-dependent rotations of the coordinate
frame. Explicitly, we write
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L = LN + Lrt

LN = 1

2

N∑
α=1

mα(Dtrα)2 − V = 1

2

N∑
α=1

mαṙ2
α +

1

2

N∑
α=1

mα(̃ξ ∧ rα)2 − ξ̃ ·
N∑

α=1

mα(rα ∧ ṙα) −V

Lrt = I
2

( ê ∧ (Dt ê ))2 = I
2

(Dt ê )2 = I
2

˙̂e
2

+
I
2

(̃ξ ∧ ê )2 − Iξ̃ · ( ê ∧ ˙̂e ) (3)

where the potential energy V is defined in (1). L is exactly invariant under the gauge
transformations (2) and, in fact, LN and Lrt are separately invariant under (2).1

LN in (3) has the form of a Lagrangian for an N-particle system described from a coordinate
frame rotating with the angular velocity −ξ̃ with respect to the laboratory frame [14]. Note,
however, that ξ̃ is a dynamical variable describing the coupling of the particles and the rotator
to the inertial forces. The equations of motion for rα, ê and ξ̃ derived from L are

mαDtDtrα + ∇αV = mαr̈α − 2mα ξ̃ ∧ ṙα − mα
˙̃
ξ ∧ rα − mα ξ̃ ∧ (rα ∧ ξ̃) + ∇αV = 0 (4a)

DtDt ê + (Dt ê )2ê = 0 with ê · ê = 1 (4b)

−∂L
∂ ξ̃

=
N∑

α=1

mαrα ∧ (Dtrα) + Iê ∧ (Dt ê ) = 0. (4c)

In the equation of motion (4a) for rα the terms due to the Coriolis, azimuthal and centrifugal
forces [15] are apparent. As a consequence of the rotational invariance of L the total angular
momentum of the system is conserved, dj/dt = 0 with

j = l + s l =
N∑

α=1

mαrα ∧ (Dtrα) s = Iê ∧ (Dt ê ). (5)

Clearly, the vector j can be time independent in every rotating reference frame only if it
vanishes. This is expressed by (4c), which can be rewritten as j = 0. Since in general L is not
invariant under separate rotations of {rα} and ê, l and s are not separately conserved. Rather,
from (4a) and (4b) they are seen to be covariantly conserved,

Dt l = 0 Dts = 0 (6)

with Dt l = l̇−ξ̃∧l. From (6), the magnitudes of l and s are conserved and frame independent,
but their directions in space are time dependent. Only in the lab frame (in which ξ = 0 and
Dt = d/dt , as discussed below) are l and s conserved.

Since the system is gauge invariant we can fix the gauge by imposing a set of conditions
of the form2 Ga({rα}, ξ, ê ) = 0, a = 1, 2, 3, which is equivalent to selecting a rotating
frame in which the trajectory of the system ({rα(t)}, ξ(t), ê(t)) in configuration space is
constrained by the relations Ga({rα(t)}, ξ(t), ê(t)) = 0. The functions3 Ga, a = 1, 2, 3, can
be chosen arbitrarily, as long as any trajectory ({r′

α}, ξ′, ê ′) can be transformed into a new
one ({rα}, ξ, ê ) satisfying Ga = 0. The new trajectory must be unique, in the sense that
no other trajectory obtained from ({r′

α}, ξ′, ê ′) by a gauge transformation satisfies the gauge
conditions. Otherwise, the gauge is said to be ambiguous [11]. Supplementary conditions
must then be imposed to fix the ambiguity.

1 Note that, unlike the two-dimensional (Abelian) case [1], we cannot add external-source terms toLwithout breaking
gauge invariance, so we have to incorporate the source into the theory as a dynamical degree of freedom. That is the
motivation for including Lrt in L. We stress here that Lrt is gauge invariant and therefore it is not a gauge-fixing term.
2 The letters a, b, c, d are used to index quantities which are not necessarily tensor components, such as Ga .
Summation over these indices and their ranges of variation are always explicitly indicated. We only use the summation
convention for tensor indices, which are denoted by latin letters i, j, k, l, . . . and always run from 1 to 3.
3 In general, Ga are functionals of the trajectory ({rα(t)}, ξ(t), ê(t)).
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2.1. The laboratory frame

Given any trajectory of the system ({rα(t)}, ξ(t), ê(t)) by means of a gauge transformation
we can obtain a physically equivalent trajectory with ξ′ = UξU † + U̇U † = 0. Indeed, given
the antisymmetric matrix-valued function of time ξ(t), there is always an orthogonal matrix
U (t) satisfying U †U̇ = −ξ. The condition ξ = 0 is then admissible as a choice of gauge for
the system, which corresponds to selecting a non-rotating coordinate frame referred to as the
‘laboratory frame’.

We denote dynamical quantities in the laboratory frame by lower-case symbols, except
for the Lagrangian and Hamiltonian. In this gauge, the Lagrangian (3) reduces to (1). L is
invariant under separate rotations of {rα} and ê, leading to the separate conservation of the
angular momenta l = ∑N

α=1 mαrα ∧ ṙα of the system of particles and s = Iê ∧ ˙̂e of the
rigid rotator. The equation of motion (4c) for ξ, which cannot be obtained from (1), must be
imposed on the system as a constraint [2], j ≡ l + s = 0. In the Hamiltonian formulation in
this gauge, this is a primary first-class constraint [16], not leading to further secondary ones.

The quantization in the gauge ξ = 0 is canonical. In units such that h̄ = 1, we have

H = HN + Hrt HN =
N∑

α=1

1

2mα

p2
α + V Hrt = 1

2I
s2

[rαi, pβj ] = iδαβδij pα = 1

i
∇α [si, sj ] = iεijksk (7)

〈φ|ψ〉 =
∫ N∏

β=1

d3rβ d2êφ∗({rα}, ê )ψ({rα}, ê )

with the commutators among rα and pα not shown in (7) all vanishing. The first-class
constraint is imposed on the state space [16], j|ψ〉 = 0. Since both l and s are constants
of motion, this constraint is clearly consistent with the dynamics. We see that the quantized
theory in the ξ = 0 gauge is completely analogous to Yang–Mills theories in the temporal
gauge [6, 17, 18]. The constraint fixing the value of j, in particular, is the equivalent of the
non-Abelian Gauss law. In the constraint equation, s plays the same role as the fermion colour
current in the Gauss law.

If in (7) we let I → ∞ with s2 fixed, Hrt → 0 and the rigid rotator drops from the
Hamiltonian, entering the dynamics only through the constant value of s in the constraint.
Thus, (7) describes in that limit an N-body system with interaction potential V in the sector
of fixed angular momentum l = −s (i.e., the null eigenspace of (l + s)2). Due to the gauge
invariance, the same must be true in any other gauge.

3. Linear gauge conditions

In order to fix a reference frame we need to impose three gauge conditions. The simplest
gauge conditions involving the coordinates of the particles depend linearly on {rα}, and do not
involve ξ or ê. As discussed below, linear gauges are relevant in the context of perturbative or
semiclassical expansions. The general form of the linear gauge conditions is

Sa({rα}) ≡
N∑

α=1

mα	aαj rαj = 0 a = 1, 2, 3 (8)

with 	aαj a set of 9N constants defining the functions Sa . We denote dynamical quantities in
this gauge by capital letters, in particular the position vectors Rα , Ê and the angular momenta
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L and S, as opposed to the corresponding quantities in the gauge ξ = 0 (the laboratory
frame) which are denoted as rα, ê, l, s. Thus, Sa({Rα}) = 0 but, in general, Sa({rα}) �= 0.
The gauge conditions (8) select a reference frame rotating so that the linear combinations of
coordinates Sa vanish for all t. If we choose, for instance, all coefficients in (8) vanishing
except for 	11Y = 	21Z = 	32Y = 1, the coordinate frame must rotate together with particles
1 and 2 so that 1 is on the X-axis and 2 on the X–Z plane for all t. The formalism in these
linear gauges is entirely analogous to that of non-Abelian Yang–Mills theories in linear non-
covariant gauges, such as the Coulomb or axial gauges, in which the fields are also constrained
by linear relations [6] (see also [3, 17, 18]).

For the functions Sa({rα}) to be admissible as gauge conditions they must not be
rotationally invariant. The variation of Sa under an infinitesimal rotation is δSa = Qakδθk ,
with

Qai({Rγ }) =
N∑

β=1

mβ	aβj εjikRβk a = 1, 2, 3. (9)

The requirement that Sa must not be invariant under infinitesimal rotations is therefore satisfied
if the matrix Qai is not singular on the gauge manifold. Thus, the following equations must
be simultaneously satisfied:

Sa({Rα}) = 0 a = 1, 2, 3 det(Qbj ({Rα)}) �= 0 (10)

except possibly at exceptional configurations at which the gauge is singular, det Q = 0, such
as Rα = 0 for all α. Furthermore, without loss of generality, we assume that the gauge
coefficients have been orthogonalized so that

N∑
α=1

mα	aαj	bαj = R2
aδab R2

a ≡
N∑

α=1

mα	aαj	aαj > 0 1 � a, b � 3. (11)

The gauge transformation from the gauge ξ = 0 to the gauge Sa = 0 is of the form (2),

Rα = Urα Ê = Uê ξ = U̇U †. (12)

The orthogonal matrix U is parametrized by three angles {θa}3
a=1. Although our approach

and results do not depend on any specific parametrization of the rotation group, some
parametrization-dependent quantities, such as the momenta pθa

conjugate to θa , are physically
meaningful and play an important role in some intermediate calculations. All the information
we will need about the parametrization of U is encoded in the matrices Λ and λ defined by

∂U

∂θa

U † = aiT i U † ∂U

∂θa

= λaiT i a = 1, 2, 3 (13)

where the T j are the standard generators of the so(3) algebra, (T j )ik = εijk . The three
matrices ∂U/∂θaU

†, a = 1, 2, 3, must be a basis of so(3) for all values of {θb}, if the
parametrization is to be well defined. Thus, the matrix ai is invertible and, analogously, so
is λai . From the unimodularity of U it follows that U †T iU = UijT j and then, from (13),
λaj = aiUij . We can express ξ in terms of θa and their time derivatives as

ξik =
3∑

a=1

θ̇aaj εijk or ξ̃j =
3∑

a=1

θ̇aaj . (14)

ξ in this gauge can also be written in terms of Rα, Ê and their time derivatives from the
constraint equation L + S = 0. The resulting expression, unlike (14), would be valid only
within the constrained subspace.



Rotating frames and gauge invariance in 3D many-body quantum systems 6779

Through (12), the gauge conditions determine the time dependence of {θa} so that, given
a trajectory ({rα(t)}, ê(t)) of the system in the gauge ξ = 0, we have Sa({Rα(t)}) =
Sa({U ({θa(t)})rα(t)}) = 0 for all t. We view (12) as a coordinate transformation in
configuration space, specifying the new coordinates {Rα({rα})}, {θa({rα})}, Ê({rα}, ê ) in
terms of the original ones {rα}, ê. The number of independent variables is the same in
both sets, since the N position vectors {Rα} are restricted by the three linear conditions
Sa({Rα}) = 0. From (12), we then have

∂Rβi

∂rαj

= δαβUij +
∂Uik

∂rαj

UlkRβl. (15)

Substituting (15) into the relation ∂Sa({Rβ})/∂rαj = 0, and using the definition (9) for
Q, the assumption (10) that it is invertible on the gauge manifold, and the antisymmetry of
(∂Uik/∂rαjUlk) in i and l, we obtain the relation

∂Uik

∂rαj

Ulk =
3∑

a=1

εilmQ−1
mamα	aαnUnj (16)

which expresses ∂U/∂rαjU
† in terms of {Rγ } and {θb}. This expression characterizes the

dependence of U on {rα}, and will be important below, especially in the discussion of angular
momentum (see section 3.1). Unlike the two-dimensional case [1] in which the explicit form
of U is easily found, (16) does not give us the explicit information about possible Gribov
ambiguities of this gauge. Those ambiguities are analysed below (section 3.4), in connection
with the derivation of the Hilbert-space inner product in this gauge.

The Lagrangian in this gauge is given by L in (3) with rα and ê substituted by Rα

and Ê, according to our convention. Due to relation (14) between ξ and θ̇a , we can use
{Rα}, {θa}, Ê as dynamical variables, the Lagrangian in terms of them being obtained by
substituting ξ = U̇U † in (3). Formulating the theory in those variables, however, would
result in momenta pθa

conjugate to θa which are linearly related to J = L + S, not just L.
Furthermore, in the Hamiltonian formulation we have [Li, Ê] �= 0 = [Ji, Ê]. Thus, the
gauge transformation (12) ‘mixes’ the particle degrees of freedom {Rα} and {θa} with the
rotator degrees of freedom Ê. We can avoid such mixing by describing the rigid rotator in
terms of its position vector in the lab frame. Once the dynamical variables in (3) have been
appropriately capitalized, we set ξ = U̇U † and Ê = Uê to obtain

L = LN + Lrt Lrt = I
2

˙̂e
2

LN = 1

2

N∑
α=1

mαṘ
2
α +

1

2

N∑
α=1

mα

(
R2

αδij − RαiRαj

) 3∑
c,d=1

cidj θ̇cθ̇d

−
N∑

α=1

mαεijkRαj Ṙαk

3∑
c=1

ci θ̇c − V. (17)

This Lagrangian, with the gauge conditions (8) holding as strong (operator) equalities and the
constraint J = 0 valid as a weak (state space) equality describes the same dynamics as (3).
The formulation based on (17), with {Rα}, {θa}, ê as dynamical variables, closely follows the
treatment of non-Abelian Yang–Mills theories in non-covariant linear gauges given in [6].

3.1. Angular and linear momenta

In the quantum theory in the gauge ξ = 0, as discussed in section 2.1, the angular momentum
operator l satisfies the usual commutator algebra. Using (16), the definition (9) of Q, and the
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unimodularity of U , we obtain

[li , Ujk] =
N∑

α=1

εilmrαl

1

i

∂Ujk

∂rαm

= iεiknUjn. (18)

From (18), using L = Ul and Rα = Urα , we get

[Li, Ujk] = −iεijnUnk [li , Rαj ] = 0 = [Li, Rαj ]
(19)

[li , lj ] = iεijklk [li , Lj ] = 0 [Li, Lj ] = −iεijkLk.

As expected, the particle position vectors Rα in this gauge are rotation invariant. The
commutators among components of l and L are the same as for a rigid body, with l the angular
momentum in the laboratory and L in the body frame. Furthermore, taking into account the
commutators (7) for s, [s,U ] = 0,S = Us and J ≡ L + S = Uj, we have

[Si, Sj ] = iεijkSk [Li, Sj ] = −iεijkSk
(20)

[Ji, Jj ] = −iεijkJk [Ji, Lj ] = −iεijkJk [Ji, Sj ] = 0.

Note that [L,S] �= 0, due to the dependence of S on the angles {θa}. The classical expressions
for L and pθa follow immediately from the Lagrangian (17) and (5),

pθa = −aiLi Li =
N∑

α=1

mαεijkRαj Ṙαk −
N∑

α=1

mα

(
R2

αδij − RαiRαj

)
ξ̃j (21)

with ξ̃ given by (14). By using the identity
∑3

c=1 ∂ci/∂θaθ̇c = ̇ai + ajεijk

∑3
c=1 θ̇cck,

which follows from the definition (13) of ai , the equation of motion for θa from the Lagrangian
(17) can be reduced to the form DtL = 0, in agreement with (6). In the quantum theory,

pθa = 1

i

∂

∂θa

Li =
3∑

a=1

−1
ia i

∂

∂θa

. (22)

Similarly, pθa = −λaili and li = ∑3
a=1 λ−1

ia i∂/∂θa. Equations (18)–(22) are completely
analogous to the relations among colour currents in Yang–Mills theories in non-covariant
gauges (see equations (4.44)–(4.48) and (4.55) in [6]).

In the classical theory, we obtain the momenta P α conjugate to Rα by differentiating (17)
(or, equivalently, (3)) with respect to Ṙα under the constraints Ṡa({Rα}) = Sa({Ṙα}) = 0 to
obtain

Pαi = mαṘαi − mαξ̃j

(
εijkRαk −

3∑
b=1

1

R2
b

Qbj	bαi

)
(23)

with Qbj and R2
b defined in (9) and (11). These momenta are consistent with the gauge

condition, since they satisfy

0 =
N∑

β=1

	aβjPβj = Sa ({P α/mα}). (24)

From the transformation (12), we can obtain the relation between the velocities {ṙα} in the
gauge ξ = 0, and those in the gauge Sa = 0, {Ṙα}, {θ̇a}. Correspondingly, we can express
the momenta {pα} in one gauge in terms of the momenta {P α} and L in the other,
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pαj = Ukj

(
Pαk +

3∑
a=1

mα	aαkQ
−1
na (Ln − n)

)
with n ≡

N∑
γ=1

εnpqRγpPγq. (25)

The quantity4 n defined by this equation has the appearance of an angular momentum but,
as shown below, it does not satisfy the so(3) commutation relations in general. With the
transformation (25) for momenta we obtain from HN in (7) the classical Hamiltonian for the
particle system in this gauge,

HN =
N∑

α=1

1

2mα

P 2
α +

1

2

3∑
a=1

R2
aQ

−1
ia Q

−1
ja (Li − i)(Lj − j) + V. (26)

The Hamiltonian Hrt for the rigid rotator is clearly the same as in (7).
The transformations (12) and (25) can be inverted, to express P α,L,Rα and θa in terms

of pα and rα . Using the Poisson brackets (7), we then get the Poisson brackets in this gauge.
Alternatively, they can be found as Dirac brackets [16] relative to the set of second-class
constraints Sa({Rα}) = 0 = Sa({P α/mα}), a = 1, 2, 3. The results, written in the notation
of quantum commutators, are

[Rαi, Pβj ] = i

(
δαβδij −

3∑
a=1

mβ

R2
a

	aαi	aβj

)
. (27)

All other commutators among Rα and P β vanish, and [L,Rα] = 0 = [L,P β]. From (27),
we get

[Sa({Rα}), Pβj ] = 0 = [Sa({P α/mα}), Rβj ] = [n,Sa({Rα})] (28a)

[i,j ] = iεijkk − i
N∑

α=1

3∑
a=1

1

R2
a

	aαm(εimnQaj − εjmnQai)Pαn. (28b)

We see that the gauge conditions (8), as well as (24), are operator equations, which can be
evaluated within commutators. We also note that the definition (25) of Λ is free of ordering
problems, even though the commutators (27) are not canonical, but its components i in
general do not close an angular momentum algebra, as shown by (28b).

In the quantum theory, a realization of the commutators (27) is obtained by defining P α

as the projection of the gradient ∇α on the gauge hyperplane Sa = 0,

Pαj = 1

i

∂

∂Rαj

−
3∑

a=1

mα	aαj

1

R2
a

N∑
β=1

	aβk

1

i

∂

∂Rβk

. (29)

These operators satisfy both (27) and the gauge condition (24). They also satisfy relation
(25) which, with pαj = −i∂/∂rαj , is simply the chain rule for derivatives with respect to
variables related by the transformation (12). Relations exactly analogous to (27) and (29) hold
in Yang–Mills theories (compare (29) with equations between (6.13) and (6.14) in [6]).

3.2. Quantum Hamiltonian

The classical Hamiltonian in this gauge, (26), was obtained from HN in the gauge ξ = 0 by
using the transformation (25). The Hamiltonian operator can in principle be computed in a
similar fashion, essentially by squaring (25) as an operator equation. That procedure works

4 There should be no possibility of confusion between the three-component operator Λ defined in (25) and the 3 × 3
matrix ai defined in (13).
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satisfactorily in the two-dimensional case [1], but in three dimensions a more systematic
approach is needed in order to handle the much larger amount of algebra required. The main
difference between the two cases is that in two dimensions the operator  analogous to Λ
in (25) commutes with the Faddeev–Popov determinant [1], but that is not the case in three
dimensions. Following [6] we will first formulate the theory in terms of an appropriate set
of independent generalized coordinates and their conjugate momenta. The results obtained in
this intermediate step, which are of interest by themselves, will be transformed afterwards to
the variables {Rα} and {θa}.

The gauge conditions (8) are defined by 9N constants 	aαi, a = 1, 2, 3, α = 1, . . . , N ,
which constitute a set of three vectors Γa with 3N components 	aαi each, orthogonalized
according to (11). We extend the set {Γa}3

a=1 to an orthogonal basis {Γa}3N
a=1 of R

3N by
arbitrarily choosing 3(N − 1) additional vectors {Γb}3N

b=4 satisfying the orthogonality and
completeness relations,

N∑
α=1

mα	aαj	bαj = R2
aδab 1 � a, b � 3N

3N∑
a=1

mαmβ

R2
a

	aαi	aβj = mαδαβδij (30)

which generalize (11). We assume, for simplicity, that R2
4 = · · · = R2

3N ≡ R2, with R2 > 0
an arbitrary constant. Furthermore, we choose all 	aαi to have dimensions of length, so that
Sa,Qai and R2

a all have the dimensions of an inertia moment. We define a set of generalized
coordinates qa, 1 � a � 3N , in the laboratory gauge ξ = 0 by

rαi(t) =
3N∑
a=1

qa(t)
	aαi

Ra

qc(t) =
N∑

α=1

mα

Rc

	cαirαi(t) 1 � c � 3N. (31)

Similarly, we introduce 3N − 3 independent generalized coordinates in the gauge (8) by

Rαi(t) =
3N∑
a=4

Qa(t)	aαi Qc(t) =
N∑

α=1

mα

R2
	cαiRαi(t) 4 � c � 3N. (32)

Due to the orthogonality relations (30), expression (32) for Rα satisfies the gauge conditions
(8). The dynamics in this gauge are completely specified by the 3N independent variables
{θa}3

a=1 and {Qa}3N
a=4, and their conjugate momenta. Note that the normalization of the

coordinates qa and Qa is different. In (32), the Qa are chosen to be dimensionless, for later
convenience, whereas in (31) the qa are defined so that the kinetic energy operator takes the
simplest possible form, that of a Laplacian in Cartesian coordinates.

The Hamiltonian HN in the laboratory frame, (7), is given in terms of qa by

HN = −1

2

3N∑
a=1

∂2

∂q2
a

+ V

from whence the expression for HN in terms of {θa} and {Qa} follows by means of a coordinate
transformation. The kinetic energy operator then takes the standard form of a Laplacian in
curvilinear coordinates in configuration space. As shown in appendix A, the result can be
written as

HN = − 1

2R2J

3N∑
a=4

∂

∂Qa

J
∂

∂Qa

− 1

2||J

(
1

R2

3N∑
a=4

∂

∂Qa

Qai +
3∑

b=1

∂

∂θb

−1
ib

)
N−1

ij ||J

×
(

1

R2

3N∑
c=4

Qcj

∂

∂Qc

+
3∑

d=1

−1
jd

∂

∂θd

)
+ V (33)
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where || = det(ai) with ai defined in (13) and J = det(N )1/2 with

Nhi =
3∑

c=1

1

R2
c

QchQci N−1
jk =

3∑
d=1

R2
dQ

−1
jd Q

−1
kd . (34)

The quantities Qai with 4 � a � 3N appearing in (33) are defined as in equation (9), of which
they are an extension to a � 4. The inverse matrix Q

−1
ia , however, is defined only for a � 3.

Expression (33) for HN depends explicitly on the constants 	aαi with a � 4 through Qai with
a � 4 and on the parametrization of U ({θa}) through −1

kc , both of which are largely arbitrary.
Those dependences will disappear once we recast HN in terms of P α and L.

Using the relation, valid for any matrix depending on a parameter,

∂||
∂θa

= ||
3∑

b=1

−1
nb

∂bn

∂θa

(35)

we obtain (compare (4.48) of [6])
3∑

b=1

[
pθb

, ||−1
jb

] =
3∑

b=1

1

i

∂
(||−1

jb

)
∂θb

= 0 (36)

and hence, using (22),

1

||
3∑

b=1

∂

∂θb

||−1
jb =

3∑
b=1

−1
jb

∂

∂θb

= −iLj . (37)

Therefore, we can rewrite HN in terms of L as

HN = − 1

2R2J

3N∑
a=4

∂

∂Qa

J
∂

∂Qa

− 1

2J

(
1

R2

3N∑
a=4

∂

∂Qa

Qai − iLi

)
N−1

ij J
(

1

R2

3N∑
c=4

Qcj

∂

∂Qc

− iLj

)
+ V (38)

thus eliminating all explicit dependence of HN on −1
ia and the parametrization of U ({θa}).

Applying the chain rule, from (32) we have

∂

∂Qc

=
N∑

α=1

	cαi

∂

∂Rαi

4 � c � 3N. (39)

The fact that the Rα are not independent, being related by (8), does not affect (39) because of
the orthogonality relations (30). Using the definition (29) of P α and the completeness relation
(30), we get

Pβj =
3N∑
c=4

mβ

R2
	cβj

1

i

∂

∂Qc

1

i

∂

∂Qd

=
N∑

β=1

	dβjPβj 4 � d � 3N (40)

and from (40) and completeness,

1

R2

3N∑
a=4

1

i

∂

∂Qa

Qai = 1

R2

3N∑
c=4

Qci

1

i

∂

∂Qc

= i (41)

with i given by (25). Substituting (40) and (41) into HN in (38), we finally obtain

HN =
N∑

α=1

1

2mαJ
PαiJPαi +

1

2J
(Li − i)N−1

ij J (Lj − j) + V (42)
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in which all dependence on {	aαi}3N
a=4 has disappeared. The total Hamiltonian in this gauge is

H = HN +Hrt, with Hrt from (7). Since s is a constant of the motion we can let I → ∞ with
s fixed, so that Hrt vanishes. We are then left with an N-body system described by HN and
the constraint L| 〉 = −S| 〉 = −U ({θa})s| 〉 on the state space, with ṡ = [HN, s] = 0. We
now turn to this constraint equation.

3.3. Constraint and physical Hilbert space

The wavefunction in this gauge ψ({Rα}, {θa}, ê ) is required to satisfy the constraint
J |ψ〉 = (L + S)|ψ〉 = 0, originating in the equation of motion (4c). Expressing L in
terms of pθa as in (22), and using S = Us and (13), we can write the constraint explicitly as(

i
∂

∂θa

+ λaksk

)
ψ({Rα}, {θa}, ê ) = 0 a = 1, 2, 3. (43)

We introduce the unitary operator U({θa}) [6], depending on {θa} and acting on the Hilbert
space of the rigid rotator, which satisfies the analogue in that Hilbert space of (13),

∂U
∂θa

U† = iλaksk a = 1, 2, 3. (44)

The matrix elements of U({θa}) in the basis of eigenfuntions of s2, sz, 〈ê |s, sz〉 = Yssz
(ê ) are

the matrices Ds
s ′
zsz

({θa}) (given, e.g., in [20] in terms of Euler angles). Defining the physical

wavefunction ψ̂({Rα}, ê )

ψ({Rα}, {θa}, ê ) = U({θa})ψ̂({Rα}, ê ) (45)

we see by direct substitution that (45) is a solution to the constraint equation (43) [6]. The
wavefunctions ψ̂({Rα}, ê ) span the physical Hilbert space of the system.

Some remarks about the form of the solution (45) to the constraint are in order. By
definition Ê = U ({θa})ê and S = U ({θa})s. Since [si, (ê )j ] = iεijk(ê )k , we have
[Si, (Ê)j ] = iεijk(Ê)k and from (18), [Lk, (Ê)l] = −iεkln(Ê)n. From these relations,
and taking into account that s is a differential operator on the Hilbert space of the rigid
rotator, we obtain U({θa})χ(ê ) = χ(Ê) for any χ(ê ). Thus, (45) can be rewritten as
ψ({Rα}, {θa}, ê ) = ψ̂({Rα}, Ê). Had we formulated the theory in terms of {Rα}, {θa} and Ê,
the momenta conjugate to θa would have been pθa = −aiJi , instead of (21), and the constraint
Jψ = 0 would have led to ψ not depending on {θa}, ψ({Rα}, {θa}, Ê) = ψ̂({Rα}, Ê), the
same result as (45).

From (44) we obtain [Lk,U] = −SkU , which leads to U†LkU = Lk − U†SkU . Either
from this last equation or from the constraint, on the physical wavefunctions we have
U†LkUψ̂ = −U†SkUψ̂ = −skψ̂ . Therefore, in the physical Hilbert space, the Hamiltonian
(42) acquires the form

ĤN ≡ U†HNU =
N∑

α=1

1

2mαJ
PαiJPαi +

1

2J
(si + i)N−1

ij J (sj + j) + V. (46)

Similarly, we can write ĤN in terms of the independent coordinates {Qa} and their conjugate
momenta, by just substituting −s for L in (38). Thus, once the constraint has been solved the
angular variables enter the dynamics only through the dependence of ĤN on s, the angular
momentum of the rigid rotator in the lab frame. Note that although s is a constant of motion
in the full Hilbert space of the theory, in general [s, ĤN ] �= 0 because [s,U] �= 0. Thus,
although s2 can always be diagonalized simultaneously with ĤN within the physical subspace,
sz in general cannot be diagonalized. The physical reason is that within the physical subspace
the matrix elements of s are equal to those of −L, which is not conserved.
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3.4. Inner product in Hilbert space

In order to find the inner product in the gauge Sa = 0, we transform its expression (7) in the
gauge ξ = 0 by means of the Faddeev–Popov technique [19]. For that purpose, we first find
an appropriate resolution of the identity over the group SO(3), fixing on the way any Gribov
ambiguities [11, 2] inherent in the gauge conditions. The invariant integration over SO(3) is
given by (see, e.g., [21])∫

SO(3)

dg f (g) =
∫ 3∏

a=1

dθa||f (g({θa})) (47)

where on the lhs the integration variable g takes values in SO(3) and f : SO(3) → C. On
the rhs of (47) the integration extends over all of parameter space and || ≡ det(ai) with
ai defined in (13). From (36) and (47), the operators L defined in (22) are Hermitian,∫ ∏3

a=1 dθa||ψ∗Lkφ = (∫ ∏3
a=1 dθa||φ∗Lkψ

)∗
.

3.4.1. Resolution of the identity: singularities of the coordinate frame (Gribov ambiguities).
With the integration measure (47), the resolution of the identity for the gauge (10) takes the
form

1 =
∫ 3∏

a=1

dθa||
3∏

b=1

δ

(
1

Rb

Sb({U (θ)rα})
)
J ({U (θ)rα})� (J ({U (θ)rα}))�(F) (48)

where the gauge conditions are conventionally written as Sb/Rb, and J ({rα}) is defined after
(33). To obtain (48), let θ0 = {θ0a} be a root to Sb({U (θ0)rα}) = 0, b = 1, 2, 3, for some
fixed {rα}. Then,

Sb({U (θ0 + δθ)rα}) =
N∑

α=1

mα	bαj δrαj

(49)

δrαj =
3∑

c=1

δθc

∂Ujk

δθc

(θ0)rαk =
3∑

c=1

δθccnεjnlUlm(θ0)rαm

where for the last equality we used (13). Using (9), we rewrite (49) as

1

Rb

Sb ({U (θ0 + δθ)rα}) =
3∑

c=1

δθc

1

Rb

cnQbn({U (θ0)rα}) (50)

so that

det

(
δ(Sb/Rb)

δθc

)
θ0

= || det

(
1

Rb

Qbn({U (θ0)rα})
)

= 1∏3
c=1 Rc

|| det(Qbn({U (θ0)rα})) (51)

and therefore
3∏

b=1

δ

(
1

Rb

Sb({U (θ0)rα})
)

=
∑
θ0

∏3
c=1 Rc

||| det(Q)|
3∏

a=1

δ(θa − θ0a) (52)

where the sum extends over all roots θ0. In order for the lhs of (48) to be 1, θ0 must be
unique. The linear gauge conditions, however, have in general Gribov ambiguities leading to
a discrete set of roots θ0. We assume that we have chosen the parametrization U ({θa}) so that
|| > 0. But det(Q) can vanish at some configurations {rα} at which the gauge conditions are
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singular. Given a configuration {R′
α = U ({θ ′

a})rα, θ ′
a} with det(Q) < 0, we can always find

a gauge-equivalent one {Rα = U ({θa})rα, θa} with det(Q) > 0. Thus, we restrict ourselves
to those configurations satisfying

0 <
det(Q)∏3

c=1 Rc

= (det(N ))1/2 ≡ J . (53)

If this supplementary condition were enough to remove all ambiguities, together with (52) it
would lead to (48). Unlike the two-dimensional case [1], however, choosing the sign of the
Faddeev–Popov determinant J is in general not enough to remove the ambiguities. Further
supplementary conditions may be required which are of the form F1 > 0, . . . , Fr > 0, where
the Fj are r functions of the particle coordinates (as many as necessary to fix the gauge), such
that for each j it is true that Fj = 0 implies J = 0. This set of additional supplementary
conditions is symbolized by the factor �(F) in (48).

A simple example will illustrate the previous discussion. Assume that for a system of
N � 3 particles we want to choose a coordinate frame rotating so that particle 1 is on the
X-axis and particle 2 is on the X–Z plane for all t. That frame is not well defined if particle
1 is at the origin or particle 2 is on the X-axis. The gauge conditions defining the frame
are S1 ≡ R1Y = 0, S2 ≡ R1Z = 0,S3 ≡ R2Y = 0, leading to det(Q) = −R2

1XR2Z .
As expected, det(Q) = 0 if R1X = 0 (1 is at the origin) or R2Z = 0 (2 is on the X-axis).
These singularities stem from the fact that there are four ways to choose the rotating frame,
depending on whether we choose R1X

>
< 0, R2Z

>
< 0 for all t. By requiring J > 0 we must

have R2Z < 0, which fixes the ambiguity only partially. In order to completely fix the gauge
we have to impose a supplementary condition such as F1 ≡ R1X > 0. Clearly, F1 = 0
implies det(Q) = 0 = J . Alternatively, we may exploit the fact that if we do not impose
the condition R1X > 0 every configuration is counted twice (except for those with R1X = 0
which are counted once, but they have zero measure and do not contribute to (48)). Thus, in
this example, we may omit the factor �(F) on the rhs of (48) and set the lhs to 2.

The general case is analogous to the simple example above. We either have to include
in (48) the factor �(F) appropriate to the gauge conditions, or replace it by a factor
1/(1 + N({Rα})) with N({Rα}) the number of gauge-equivalent copies of each configuration
{Rα} satisfying the gauge conditions and J > 0 [11]. In those cases in which N({Rα}) is a
constant over all of configuration space (except maybe for a zero-measure set) we can omit
those factors, absorbing them in the normalization of the inner product.

3.4.2. Inner product in Hilbert space. The inner product in this gauge is straightforward to
obtain from (7) by using the Faddeev–Popov trick with the resolution of the identity (48). We
briefly sketch the derivation in order to highlight the relationship among wavefunctions in the
gauge ξ = 0 and those in this gauge. We rewrite (7) as

〈φ|ψ〉 = κ

∫ N∏
β=1

d3r′
β d2ê(φ∗

0ψ0)({U (θa)r
′
β}, ê ) (54)

where κ > 0 is a normalization constant to be chosen later (in (7), κ = 1), and we performed a
change of variables r′

β = U (θa)rβ with U (θa) an orthogonal matrix. (In (54) we temporarily
introduced the notation ψ0 for wavefunctions in the gauge ξ = 0 for convenience.) Inserting
(48) in (54), exchanging the order of integration, and changing variables back to rβ , we get

〈φ|ψ〉 = κ

∫ 3∏
a=1

dθa||
∫ N∏

β=1

d3rβ d2ê

3∏
b=1

δ

(
1

Rb

Sb

)
J�(J )�(F)(φ∗

0ψ0)({rβ}, ê )

(55)
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where we omitted the argument {rβ} in Sb and J for brevity. We can now choose κ to be the
reciprocal of the volume of the rotation group. Identifying, up to a phase factor, the physical
wavefunction ψ̂({Rα}, ê ) = ψ0({Rα}, ê ) for {Rα} satisfying the gauge condition, we finally
obtain

〈φ|ψ〉 =
∫ N∏

β=1

d3Rβ d2ê

3∏
b=1

δ

(
1

Rb

Sb

)
J�(J )�(F)(φ̂∗ψ̂)({Rβ}, ê ). (56)

This gives the inner product in the physical Hilbert space of the system. The matrix elements
for the Hamiltonian can be computed with the operator ĤN of (46) and the inner product (56).
The Hermiticity of ĤN with respect to (56) follows by partial integration, taking into account
that Pαi and i are homogeneous first-order differential operators, with constant coefficients,
satisfying [Pαi,Sb] = 0 = [i,Sb], and that J δ(Fj ) = 0 since, as mentioned above, Fj = 0
implies J = 0.

We also remark that for states satisfying the constraint (L + S)|ψ〉 = 0, using the
definition (45) of the physical wavefunction and U†SU = s we get the equality∫ 3∏

a=1

dθa||
∫

dµφ∗({Rα}, {θa}), ê )Liψ({Rα}, {θa}), ê )

= 1

κ

∫
dµ φ̂∗({Rα}, ê )(−si)ψ̂({Rα}, ê ) (57)

where we denoted by dµ the measure appearing in (56). The factor 1/κ appears in (57) due
to the normalization we chose for the inner product in the physical subspace. From (57), we
see that for physical wavefunctions the operator −s gives the matrix elements of L.

3.5. Reduced Hamiltonian and Weyl ordering: quantum potential

When working in curvilinear coordinates it is often convenient to redefine the state space by
absorbing the Jacobian in the wavefunctions, thus eliminating it from the integration measure
in the inner product and from the kinetic energy operator. That is the case, for instance, when
a perturbative expansion of J contains terms of many different orders. Furthermore, the
reduced Hamiltonian is easier to cast into Weyl-ordered form, in which the relation between
the operator and path-integral approaches is straightforward.

The Hamiltonian (46) has been simplified by restricting it to the physical Hilbert space
of gauge-invariant wavefunctions ψ̂ , so it is not of the form of a Laplacian in curvilinear
coordinates. Thus, we go back to the form (33) for HN , in which the angles {θa} and their
conjugate momenta pθa = −i∂/∂θa appear explicitly. From (33) and (A.17), we get

H̃N ≡ || 1
2 J 1

2 HN ||− 1
2 J − 1

2

= − 1

2R2

3N∑
a=4

∂

∂Qa

∂

∂Qa

− 1

2R4

3N∑
a,b=4

(
QajQbkN−1

jk

∂

∂Qa

∂

∂Qb

)
W

− 1

2R2

3N∑
a=4

3∑
b=1

(
Qaj

−1
kb N

−1
jk

∂

∂Qa

∂

∂θb

)
W

− 1

2R2

3∑
a=1

3N∑
b=4

(
−1

ja QbkN−1
jk

∂

∂θa

∂

∂Qb

)
W

− 1

2

3∑
a,b=1

(
−1

ja −1
kb N

−1
jk

∂

∂θa

∂

∂θb

)
W

+ VQ + V (58)
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where VQ is the quantum potential given below (see (65)) and (· · ·)W indicates Weyl ordering
(e.g., (A.11)). Let us introduce the notation

Dα
ij ≡ εijkRαk =

3N∑
a=1

1

R2
a

	aαiQaj (59)

where the second equality follows from (9) and (30). With this definition and relations (40)
and (24), we can rewrite (58) in terms of P α operators as

H̃N =
N∑

α=1

1

2mα

P 2
α +

1

2

N∑
α,β=1

(
Dα

ijD
β

lkN
−1
jk PαiPβl

)
W

+
3∑

b=1

1

2

(
−1

kb

1

i

∂

∂θb

+
1

i

∂

∂θb

−1
kb

)

×
N∑

α=1

1

2

(
N−1

jk Dα
ijPαi + PαiN−1

jk Dα
ij

)
+

1

2
N−1

jk

3∑
a,b=1

(
−1

ja −1
kb

1

i

∂

∂θa

1

i

∂

∂θb

)
W

+ VQ + V.

(60)

This operator is to be applied to wavefunctions of the form ψ̃({Rα}, {θa}, ê ) =
||1/2J 1/2ψ({Rα}, {θa}, ê ) or, using (45),

ψ̃({Rα}, {θa}, ê ) = || 1
2 U({θa})̂̃ψ({Rα}, ê ) with ̂̃

ψ({Rα}, ê ) ≡ J 1
2 ψ̂({Rα}, ê ).

(61)̂̃
ψ is the reduced form of the physical wavefunction ψ̂ of (45).

From (36), we obtain the form of the angular momentum operator on the first line of (60)
when applied to wavefunctions of the form (61)

3∑
b=1

1

2

(
−1

kb

1

i

∂

∂θb

+
1

i

∂

∂θb

−1
kb

)
ψ̃ = −|| 1

2 LkU({θa})̂̃ψ = || 1
2 U({θa})sk

̂̃
ψ (62)

the second equality following from the discussion immediately above (46). After appropriately
rearranging the angular operator on the second line of (60) we can apply (62) to it as well and,
taking into account that N−1

ij is symmetric, we get

1

2
N−1

jk

3∑
a,b=1

(
−1

ja −1
kb

1

i

∂

∂θa

1

i

∂

∂θb

)
W

ψ̃ = −1

8
N−1

jk

3∑
a,b=1

{
∂−1

ja

∂θb

∂−1
kb

∂θa

+

(
−1

ja

∂

∂θa

+
∂

∂θa

−1
ja

)(
−1

kb

∂

∂θb

+
∂

∂θb

−1
kb

)}
ψ̃

= −1

8
|| 1

2 UN−1
jk

3∑
a,b=1

∂−1
ja

∂θb

∂−1
kb

∂θa

̂̃
ψ +

1

2
|| 1

2 UN−1
jk sj sk

̂̃
ψ. (63)

Thus, combining (60), (62) and (63) we obtain

H̃Nψ̃ = || 1
2 U({θa})


N∑

α=1

1

2mα

P 2
α +

1

2

N∑
α,β=1

(
N−1

jk Dα
ljD

β

mkPαlPβm

)
W

+
1

2

N∑
α=1

(
N−1

jk Dα
ljPαl + PαlN−1

jk Dα
lj

)
sk

+
1

2
N−1

jk sj sk − 1

8
N−1

jk

3∑
a,b=1

∂−1
ja

∂θb

∂−1
kb

∂θa

+ VQ + V

 ̂̃ψ. (64)
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The quantum potential is computed in appendix A.2, with the result

VQ = 1

8
N−1

jk

3∑
a,b=1

∂−1
ja

∂θb

∂−1
kb

∂θa

+ V1 + V2

V1 = −1

8

N∑
α=1

3∑
c,d=1

mαQ
−1
l′c 	cαlQ

−1
md	dαkεkl′pεplm

V2 = −1

8

N∑
β,γ=1

εnlkN−1
kh εhl′n′

(
δβγ δl′n − εl′gsRγ s

3∑
a=1

Q−1
ga mβ	aβn

)

×
(

δβγ δn′l − εlmpRβp

3∑
b=1

Q
−1
mbmγ 	bγn′

)
. (65)

(Note that both V1,2 are O(|Rα|−2) as |Rα| → ∞.) Thus, the Weyl-ordered, reduced

Hamiltonian ̂̃HN = J 1/2ĤNJ −1/2 = U†H̃NU acting on the space of reduced physical

wavefunctions ̂̃ψ({Rα}, ê ) is given by

̂̃HN =
N∑

α=1

1

2mα

P 2
α +

1

2

 N∑
β=1

PβlDβ

lj + sj

N−1
jk

 N∑
γ=1

Dγ

mkPγm + sk


W

+ V1 + V2 + V

(66)

where the second term is, explicitly,

1

2
(· · · )W = 1

8

N∑
β,γ=1

(
Dβ

rjN
−1
jk Dγ

skPβrPγ s + 2PβrDβ

rjN
−1
jk Dγ

skPγ s + PβrPγ sDβ

rjN
−1
jk Dγ

sk

)
+

1

4

N∑
β=1

(
N−1

jk Dβ

rjPβr + PβrN−1
jk Dβ

rj

)
sk +

1

2
N−1

jk sj sk. (67)

Given two states |φ〉 and |ψ〉 represented by the reduced, physical wavefunctions ̂̃φ,
̂̃
ψ , their

inner product is, according to (56) and (61),

〈φ|ψ〉 =
∫ N∏

β=1

d3Rβ d2ê

3∏
b=1

δ

(
1

Rb

Sb

)
�(J )�(F)

̂̃
φ∗({Rβ}, ê )

̂̃
ψ({Rβ}, ê ). (68)

The matrix elements of ̂̃HN computed with this inner product are, of course, identical to those
of the operator ĤN of (46) computed with the inner product (56).

As pointed out before, there is a close formal analogy between the results given
above for the quantum theory in reference frames defined by linear conditions and the
corresponding results in Yang–Mills theories in non-covariant linear gauges. The derivation
of the Hamiltonian given here parallels that of [6]. Thus, the quantum potentials V1,2 from
(65) are formally analogous to the corresponding expressions (6.12) and (6.14) in [6]. The
kinetic energy operator in (46) and in the Weyl-ordered form (66) are formally equivalent to
(4.62) and (6.15) of [6], respectively. In order to make the formal analogy clear, we note that
the space derivatives appearing in field-theoretic expressions must be mapped to zero in the
mechanical case considered here. Thus, Qai from (9) is the analogue of the expression 	kDk

in the notation of [6]. From (25) and (59), l = −∑N
α=1 mαDα

ljPαj , which is the analogue of

DiP
l
i ∼ −P l

i Di and, similarly, N−1
ij from (34) is identified with (	kDk)

−1
(
	j	

†
j

)(
D

†
k	

†
k

)−1

in [6].
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4. Centre of mass motion

In this section and the next one, we set U = 0 in the Lagrangian and take into account the
translation invariance of (1) in order to separate the centre of mass degrees of freedom. Since
the centre of mass motion is dynamically trivial, we restrict our treatment to dynamical states
with vanishing total momentum.

The Lagrangian (1) is invariant under time-independent transformations of the Euclidean
group,

r′
α = Urα + u ê ′ = Uê (69)

with U an orthogonal matrix. We define the covariant derivatives

Dtrα = ṙα − ξrα − ρ Dt ê = ˙̂e − ξê. (70)

Under time-dependent transformations rα and ê transform as in (69), and

ξ′ = UξU † + U̇U † ρ′ = Uρ + u̇ − ξ′u
(71)

(Dtrα)′ = UDtrα (Dt ê )′ = UDt ê.

Substituting time derivatives by covariant ones in (1) we obtain a Lagrangian invariant under
the time-dependent transformations (69) and (71),

L = LN + Lrt + Lcm Lcm = 1

2

N∑
α=1

mαρ2 − ρ ·
N∑

α=1

mα(ṙα − ξrα) (72)

where LN and Lrt have the same form as in (3). The equations of motion for rα and ê take
the form (4) when expressed in terms of covariant derivatives, but in this case the derivation
is slightly more involved because now Dtrα as given by (70) does not depend linearly on rα

but, rather, affinely (see appendix B). The angular momenta l and s are still given by (5), with
Dtrα from (70). We define lcm = Mrcm ∧ Dtrcm, where rcm is the centre of mass position,
Dtrcm = ṙcm − ξrcm − ρ, and M = ∑N

α=1 mα . As shown in appendix B, the equations of
motion lead to (

d

dt
− ξ

)
(l − lcm) = 0 =

(
d

dt
− ξ

)
s (73)

which is the same as (6), with (l − lcm) instead of l. Thus, the magnitudes of (l − lcm)

and s are both conserved and frame independent. Due to the fact that we are now including
(time-dependent) translations as symmetries of the system, the role played by l in sections 2
and 3 is now played by (l − lcm). The equations of motion for ξ and ρ are now of the form
l + s = 0 and pcm = 0 (with pcm = MDtrcm). Thus, in particular lcm = 0 and, like in
section 2, the total angular momentum of the system vanishes.

If we choose the gauge conditions ξ = 0 = ρ, corresponding to the laboratory frame, we
recover the Lagrangian (1), constrained by the equations of motion for ξ and ρ in this gauge,

N∑
α=1

mαrα ∧ ṙα + Iê ∧ ˙̂e ≡ l + s = 0
N∑

α=1

mαṙα = 0. (74)

These constraints are first class. In the quantum theory they restrict the state space,
(l + s)ψ = 0,

∑N
α=1 ∇αψ = 0, analogous to the Gauss law in Yang–Mills theories [6].

Except for the additional constraint on the centre of mass momentum, the quantization in this
gauge is carried out exactly as in section 2.1.
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We can now proceed along the same lines as in section 3, imposing on the system the
gauge conditions

Sa({Rα}) = 0 a = 1, 2, 3 C({Rα}) ≡ 1

M

N∑
β=1

mβRβ = 0 (75)

with Sa defined in (8). Equation (75) defines a reference frame in a particular state of rotation,
with origin at the centre of mass. Like in section 3, in the rest of this section we denote vectors
referred to this frame by capital letters, while lower-case symbols denote lab frame quantities.
The gauge conditions (75) are not mutually consistent unless Sa are translation invariant,

N∑
α=1

mα	aαj = 0 a = 1, 2, 3 (76)

the condition C = 0 being clearly rotationally invariant. Furthermore, we assume that Sa

satisfy (10) and (11). The gauge transformation from the gauge ξ = 0 = ρ is of the form
(69)–(71), with parameter u = −Urcm, where rcm = ∑N

α=1 mα/Mrα is the centre of mass
in the lab frame,

Rα = U (rα − rcm) Ê = Uê ξ = U̇U † ρ = −Uṙcm. (77)

The transformation (77) mixes the particle degrees of freedom Rα with those of the centre of
mass and the rigid rotator, just like (12) did in the non-translation-invariant case. In particular,
in these variables pθa

is not linearly related to L. That mixing is avoided, as in section 3,
by trading the dynamical variables {Rα}, Ê, ξ, ρ for {Rα}, ê, {θa}, rcm. Substituting the last
three of (77) into the Lagrangian (72) we get

L = LN + Lrt + Lcm Lcm = 1
2M ṙ2

cm (78)

with LN and Lrt now given by (17). The Lagrangian (78) is supplemented by the gauge
conditions (75) holding as strong (operator) equations, and the constraints J = L + S = 0
and pcm ≡ M ṙcm = 0 valid as weak (state space) equalities.

We keep the definitions (13) of ai and λai from section 3. Expression (14) of ξ in terms
of {θ̇a} then holds unchanged since ξ = U̇U † just like in section 3. From L in (78), we can
then derive relations (21) for pθa

and the angular momentum L in this gauge. The classical
expression (21) for L, in turn, together with the transformation law (77), leads to the relation

L = U (l − lcm) (79)

where the centre of mass angular momentum in the lab frame is defined as lcm = rcm ∧pcm =
Mrcm ∧ ṙcm. From relation (77) between Rα and rα we can derive an expression for
∂U/∂rαjU

† by following the same steps leading to (16) in section 3. The result is that (16)
remains valid without modifications and that, due to the translation invariance condition (76)
for Sa,U does not depend on rcm,

N∑
α=1

∂U

∂rα

= 0. (80)

In particular, [lcm,U ] = 0. From (16), in turn, the commutator (18) of l with U follows. Thus,
with the commutator (18), the transformation relations (77) and (79) and (80), we recover all
of the commutators (19) and also

[lcmi , lcmj ] = iεijklcmk [li , lcmj ] = iεijklcmk
(81)

[lcmi , Ujk] = 0 [lcmi , Lj ] = 0.
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Furthermore, [lcmi , sj ] = 0. Thus, since J ≡ L + S = U (l − lcm + s), with (81) we find
[lcmi , Sj ] = 0 = [lcmi , Jj ] and then all of the commutators (20) follow. In summary, with the
exception of equation (79), all of the results of section 3.1 remain valid in this case.

The relation among linear momenta in the gauge ξ = 0 = ρ and the gauge Sa = 0 = C

analogous to (25) takes the form

pαj = Ukj

(
Pαk +

3∑
a=1

mα	aαkQ
−1
na (Ln − n)

)
+

mα

M
pcmj (82)

with Λ defined as in (25). Correspondingly, the classical Hamiltonian is given by (26) with
the addition of the centre of mass kinetic energy p2

cm

/
(2M). Due to the additional gauge

conditions C = 0, the fundamental commutators (27) become

[Rαi, Pβj ] = i

(
δαβδij − mβ

M
δij −

3∑
a=1

mβ

R2
a

	aαi	aβj

)
(83)

and [Pαi,Sa({Rβ})] = 0 = [Pαi,C({Rβ})]. The differential operators realizing this algebra
are obtained in the same way as those in (29), which is now modified to

Pαi = 1

i

∂

∂Rαi

−
3∑

a=1

mα

R2
a

	aαi

N∑
β=1

	aβj

1

i

∂

∂Rβj

− mα

M

N∑
β=1

1

i

∂

∂Rβi

. (84)

These operators satisfy Sa({Pα/mα}) = 0 = ∑N
α=1 P α . They also satisfy (82), with

pαj = 1/i∂/∂rαj . The additional term in (84) with respect to (29) does not modify the
form of Λ as a differential operator. Clearly, the commutators of Rα and P α with rcm and
pcm = 1/i∂/∂rcm vanish strongly.

4.1. Quantum Hamiltonian

The Hamiltonian operator is obtained by the same procedure as in section 3.2, with obvious
modifications. We omit all calculational details and quote the results only, after establishing
the appropriate notation.

Like in section 3.2, we extend the gauge coefficients 	aαi, a = 1, 2, 3, α = 1, . . . , N , to
an orthogonal basis of R

3N . That is, we consider an extended set of coefficients 	aαi with
1 � a � 3N , α = 1, . . . , N, i = 1, . . . , 3, satisfying the orthogonality and completeness
relations (30). For simplicity, like in section 3.2, we set the normalization constants in (30)
to be independent of a for 4 � a � 3N , R2

a = R2 > 0 with R2 a constant at our disposal.
Furthermore, for 3N − 2 � a � 3N we choose the coefficients 	aαj to be independent of α.
Specifically, we set

	aαi = R√
M

δ(a−3N+3)i 3N − 2 � a � 3N 1 � α � N. (85)

With this choice the orthogonality relations (30) with 3N −2 � a � 3N and 1 � b � 3N −3
read

N∑
α=1

mα	bαj = 0 1 � b � 3N − 3. (86)

In particular, (86) contains the translation invariance conditions (76) for Sb.
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We can now define the generalized coordinates {qa}3N
a=1 by (31). We see that for

3N − 2 � a � 3N, qa = √
Mrcm(a−3N+3), i.e., up to a normalization constant the last

three qa are the components of rcm. The analogue of (31) is now

Rαi(t) =
3N−3∑
a=4

Qa(t)	aαi Qc(t) =
N∑

α=1

mα

R2
	cαiRαi(t) 4 � c � 3N − 3. (87)

From (30) and (85), expression (87) for Rα satisfies the gauge conditions (75). The dynamics
in this gauge is then completely specified by the 3N independent variables {θa}3

a=1, {Qa}3N−3
a=4

and rcm, and their conjugate momenta. In those variables HN is given by (33) with only
two modifications: first, the sums over indices running up to 3N now run only up to 3N − 3,
and second, the addition of the term −1/(2M)∂2

/
∂rcm

2
j . The definitions (34) of Nij and its

inverse, and of J and || remain unchanged. Similarly, HN is expressed in terms of Rα , their
conjugate momenta P α , and L by (42), but now with the momentum operators P α from (84),
and with the addition of the centre of mass kinetic energy term.

4.2. Physical Hilbert space, inner product, Weyl-ordered Hamiltonian

The wavefunction in this gauge ψ({Rα}, {θa}, ê, rcm) is required to satisfy the constraints
pcmψ = 0 and (L + S)ψ = 0 originating in the equations of motion for ρ and ξ from
the Lagrangian (72). The first constraint is trivial to solve. Considering wavefunctions ψ

independent of rcm, we are left with the constraint on the angular variables which, since
[pcm,L] = 0 = [pcm,S], can now be treated exactly as in section 3.3. Using the same
notation as in (45), the solution to the constraint equations is of the form

ψ({Rα}, {θa}, ê, rcm) = U({θa})ψ̂({Rα}, ê ). (88)

Within the subspace of physical wavefunctions ψ̂({Rα}, ê ), the Hamiltonian ĤN ≡ U†HNU
is given by (46), with the momentum operators P α from (84).

The discussion of the inner product from section 3.4 requires only minor changes in order
to adapt it to the translation-invariant case. Besides the resolution of the identity (48) for the
rotational gauge conditions Sa = 0, we have to fix the translational gauge by means of a
resolution of the form

1 =
∫

d3u

3∏
i=1

δ (Ci ({rα}) + ui). (89)

Inserting this factor of 1 together with (48) into the canonical inner product (7), we obtain
〈φ|ψ〉 in terms of wavefunctions in this gauge. A technical detail is that, after applying the
Faddeev–Popov procedure, the volume of the symmetry group appears as a prefactor in 〈φ|ψ〉
(see (55)). In this case, the volume of the translation group is infinite, so an appropriate limiting
or regularization procedure must be applied. Assuming that has been done, the resulting inner
product in terms of physical wavefunctions analogous to (56) is

〈φ|ψ〉 =
∫ N∏

α=1

d3Rα d2ê

3∏
a=1

δ

(
1

Ra

Sa

)
δ(3) (C)�(F)�(J )J (φ̂∗ψ̂)({Rα}, ê ). (90)

The factor �(F) is exactly as discussed in section 3.4.1, since the centre of mass condition
does not introduce further Gribov ambiguities.

We consider, finally, the form of the Weyl-ordered reduced Hamiltonian. Taking proper
account of translation invariance as described above, the analysis of section 3.5 remains valid
mutatis-mutandis. Defining the reduced physical wavefunctionŝ̃

ψ({Rα}, ê ) ≡ J 1
2 ψ̂({Rα}, ê ) (91)
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with ψ̂ as defined in (88), the reduced Hamiltonian ̂̃HN = J 1/2ĤNJ −1/2 =
J 1/2U†H̃NUJ −1/2 is given in Weyl-ordered form by (66), with P α given by (84). The
quantum potentials V1,2, in particular, are still defined as in (65). The reduced inner product
is immediately obtained from (90) and (91).

5. Quasi-rigid systems in the Eckart frame

We assume now that the potential energyV (with U = 0) has a minimum for some configuration
{zα} of the system, such that V0 ≡ V({zα}) � V({rγ }) for all configurations {rγ }. Due to
the invariance of V under the Euclidean group E3 any configuration {z′

α} related to {zα}
by a transformation of the form (69) is also a minimum. Denoting by MV the manifold of
configuration space defined byV({rγ }) = V0, we assume that the quotientMV/E2 is a discrete
set. The configurations of minimal potential energy are therefore rigid. In this section, we
discuss the quantization of the small oscillations of the system about these rigid equilibrium
configurations. We will denote by {Zα} the unique (up to discrete degeneracy) minimum of
V satisfying

N∑
α=1

mαZαiZαj = 0 i �= j

N∑
α=1

mαZα = 0. (92)

We will restrict ourselves to considering only systems for which the inertia tensor for the
equilibrium configuration {Zα} is non-singular. The small oscillations of the system are
described by trajectories of the form

rα(t) = zα(t) + δrα(t) with zα(t) = U (t)Zα + u (93)

for some orthogonal matrix U (t) and u appropriately chosen so that δrα(t) are small with
respect to their characteristic scale for all t. Since we restrict ourselves to states with vanishing
total momentum, the translation vector u in (93) must be time independent.

It is convenient to apply the inverse of the gauge transformation defined by the second
equation in (93) in order to switch to a reference frame, the ‘body frame’ of the rigid equilibrium
configuration, so that

rα(t) = Zα + δrα(t). (94)

This fixes the gauge only to leading order in δrα . We fix the residual gauge freedom by
imposing a gauge condition on δrα , which amounts to correcting the definitions (92)–(94) of
the reference frame by small quantities of first order. We choose the origin of the reference
frame at the centre of mass, so to first order in δrα the gauge conditions must be of the form
(75). The choice of the coefficients 	aαi is arbitrary as long as (76) is satisfied. We then have

Rα(t) = Zα + δRα(t) Sa({δRα}) = 0 C({δRα}) = 0. (95)

The Eckart frame corresponds to choosing 	aαi = εajiZαj , a = 1, 2, 3 [12, 9]. With this
choice the normalization constants R2

a, a = 1, 2, 3, of (11) (and also (30) and (86)) are given
by the inertia moments of the equilibrium configuration, and the matrix Q({Rαi}) of (9) is

Qai({δRα}) = R2
aδai + δQai({δRα})

(96)

δQai({δRα}) =
N∑

γ=1

mγ (Zγ · δRγ δai − δRγaZγ i) a = 1, 2, 3.

Thus, since R2
a �= 0 by assumption, for small δRα the condition det(Qai({Rα})) �= 0 is

satisfied.
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The momentum operators P α and their fundamental commutators are as given in (83)
and (84), with the replacement of ∂/∂Rαi by ∂/∂δRαi . The operator Λ defined in (25) can be
rewritten in the form

i =
N∑

α=1

εijkδRαj

1

i

∂

∂δRαk

−
3∑

a=1

δQai

R2
a

N∑
α=1

εajkZαj

1

i

∂

∂δRαk

. (97)

As expected in this gauge [12, 1], its coefficients are of O(δRα). Similarly, the operators∑N
α=1 Dα

ijPαi and
∑N

α=1 PαiDα
ij appearing in ̂̃HN are of O(δRα). The Hamiltonian ̂̃HN , given

by (66) with P α from (84), is obtained perturbatively by expanding (66) in powers of δRα .
From this point of view, the elimination of the Jacobian J from the kinetic energy, as indicated
in sections 3.5 and 4.2, is particularly convenient in perturbation theory. The inner product,
finally, is given by (90) with the modification (91), and with δRα as the integration variable.
Once the equilibrium configuration {Zα} has been chosen, its body frame is uniquely fixed.
The Eckart frame is then equally well defined as long as {δRα} are small. Thus, except in
those cases in which the equilibrium configuration {Zα} is exceptionally close to a zero of J ,
we can neglect the factor �(J ) in (90) since large displacements δRα which could drive J
to zero should be exponentially suppressed by the wavefunction. Similarly, we also expect to
be able to neglect �(F) in (90) in perturbation theory.

As a minimal illustration and consistency check of the formalism we analyse below a
simple example with N = 3, and briefly comment on the N = 4 case. The natural variables
for quasi-rigid systems are normal coordinates, so below we recast the Hamiltonian in terms
of those coordinates. We remark, however, that the results of the previous sections are more
general than the simple examples considered here, and can be applied to non-quasi-rigid
N-body systems, both in the operator and path integral formalism.

5.1. A simple example with N = 3

The simplest possible model, within our assumptions, consists of three particles of equal
mass m interacting through a two-body potential V as in (1), with U = 0 and Vαβ = V

independent of α, β. V (r) is assumed to have an absolute minimum at r = a > 0. The
classical equilibrium configurations are then those in which the particles lie at relative rest on
the vertices of an equilateral triangle of side a. An equilibrium configuration satisfying (92),
unique up to permutations of the particles and discrete rotations of the coordinate axes, is

Z1 = a
(− 1

2 ,− 1
2
√

3
, 0
)

Z2 = a
(

1
2 ,− 1

2
√

3
, 0
)

Z3 = a
(
0, 1√

3
, 0
)

(98)

with the inertia tensor ma2/2 diag(1, 1, 2).
The Eckart gauge is defined by (75) with 	aαi = εajiZαj , a = 1, 2, 3, which are

normalized to R2
1 = ma2/2 = R2

2,R
2
3 = ma2. Those gauge conditions make the planar

nature of the problem apparent, since they imply that δRα3 = 0 = Pα3, α = 1, 2, 3, as
operators. This leads, in particular, to the operator Λ of (25) having two null components
1 = 0 = 2 (as operators), with 3 being conserved and having integer eigenvalues, as
shown below. Thus, in this example Λ is an angular momentum operator, though two- rather
than three-dimensional, and can be rightfully termed ‘residual’ angular momentum as in [1].
The three-dimensional rotations of the system are taken into account by the total angular
momentum operator s.

Setting V ′′(a) ≡ mω2, the quadratic terms in an expansion of V about {Zα} are

V(2) = mω2

2

3∑
α<β=1

(
1

a
(Zα − Zβ) · (δRα − δRβ)

)2

. (99)
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Using the gauge conditions we could eliminate six degrees of freedom, describing the system
in terms of, e.g., δR1X, δR2X, δR2Y and their conjugate momenta. A better approach is to
use a set of normal coordinates {δQa}6

a=4 as discussed in sections 3.2 and 4.1. Thus, with
	aαi, a = 1, 2, 3, as defined above and 	aαi, a = 7, 8, 9, as defined by (85), we can choose
	aαi, a = 4, 5, 6, to be those eigenvectors of the quadratic form associated with V(2) which
satisfy the orthogonality conditions (30) (in particular, (86)), and normalized5 to R2 = h̄/ω.
Those 	aαi, a = 4, 5, 6, are the vibrational normal modes of V(2), whose associated normal
coordinates δQa are given by (87),

δQ4 =
√

mω

h̄

(
1

2
δR1X − 1

2
√

3
δR1Y − 1

2
δR2X − 1

2
√

3
δR2Y +

1√
3
δR3Y

)
δQ5 =

√
mω

h̄

(
− 1

2
√

3
δR1X − 1

2
δR1Y − 1

2
√

3
δR2X +

1

2
δR2Y +

1√
3
δR3X

)
(100)

δQ6 =
√

mω

h̄

(
−1

2
δR1X − 1

2
√

3
δR1Y +

1

2
δR2X − 1

2
√

3
δR2Y +

1√
3
δR3Y

)
.

Similarly, from (39), (40) (with 3N −3 instead of 3N ) we obtain the relation between ∂/∂δQa

and either ∂/∂δRαi or Pαi . The result is given by (100) with δQa substituted by 1/i∂/∂δQa

on the lhs, and δRαi substituted by either h̄/(mω)1/i∂/∂Rαi or 1/(mω)Pαi , respectively, on
the rhs.

The quadratic piece of the Hamiltonian ̂̃HN (henceforth ̂̃H) of section 4.2 can be written
as

̂̃H0 ≡ 1

2m

3∑
β=1

P 2
β + V(2) = h̄ω

2

6∑
a=4

(
− ∂2

∂δQ2
a

+ σ 2
a δQ2

a

)
σ 2

4 = 3

2
= σ 2

5 σ 2
6 = 3.

(101)̂̃H0 is the lowest-order Hamiltonian in a perturbative expansion in powers of ε =√
h̄/(mωa2) � 1. From the definition (25), or equivalently from (97), we find the residual

angular momentum as

i =
3N−3∑
a=4

δQai

R2

1

i

∂

∂δQa

and therefore

1 = 0 = 2 3 = 1

i

(
δQ5

∂

∂δQ4
− δQ4

∂

∂δQ5

)
(102)

with δQai defined in (96). To O(ε2) the quantities entering ̂̃H are R2
1 = R2

2 = R2
3

/
2 =

h̄/(2ωε2),N−1
ij = 1

/
R2

(i)δ(i)j + O(ε3),V1 = O(ε3), and the anharmonic terms in V , which
are O(ε3). The expansion of V2 = const + O(ε3) starts at O(ε2) but the lowest-order term is

a constant, which we drop. Retaining only terms through O(ε2) in ̂̃H, and expressing them in
terms of normal coordinates, we obtain̂̃H = ̂̃H0 + ̂̃H1

̂̃H1 = ωε2

h̄

(
s2 − s2

3 +
1

2
(s3 + 3)

2

)
+ O(ε3) (103)

where we used 3 as defined in (102), and dropped all constant terms. The operators
s2, s3 and 3 all commute with each other and with the Hamiltonian. The physical
meaning of the Hamiltonian (103) is apparent from (57): for physical wavefunctions the

5 In this section and the following, we restore h̄ in all expressions.
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operator s gives the matrix elements of −L so that, to this order, (103) corresponds to
H̃1 = 1

/
2N−1

ij (Li − i)(Lj − j), with N−1
ij the inverse of the equilibrium inertia tensor

and L − Λ the difference of the total and residual angular momenta in the Eckart frame.
Since we are not going to compute beyond O(ε2) in perturbation theory, it is easier (to

this order) to solve the eigenvalue problem for (103) exactly rather than as a perturbation about
the Hamiltonian (101). We introduce cylindrical coordinates in the space of δQ4,5,6

ρ =
√

δQ2
4 + δQ2

5 ϕ = arctan

(
δQ4

δQ5

)
ζ = δQ6 (104)

and classify the Hamiltonian eigenfunctions and eigenvalues according to the eigenvalues of̂̃H0,3, s
2 and s3 (with quantum numbers denoted by (n, nζ ), λ, �,m, respectively). The

wavefunctions arễ
ψ�m

nλnζ
(ρ, ϕ, ζ ; ê ) = Rn|λ|(ρ)�λ(ϕ)Znζ

(ζ )Y�m(ê )

Rn|λ|(ρ) = ρ|λ|L|λ|
n

(√
3

2
ρ2

)
e−√

3/2ρ2/2 �λ(ϕ) = eiλϕ (105)

Znζ
(ζ ) = Hnζ

(
√

3ζ ) e−3ζ 2/2

where we omitted a normalization constant, n, nζ and � are non-negative integers, λ and
m are integers, and the spherical harmonics Y�m, associated Laguerre polynomials Lk

n and
Hermite polynomials Hn are defined in the standard way in quantum mechanics [20]. The
dependence of the wavefunction (105) on ê only carries the representation of the rotation group
appropriate to a state of angular momentum �. We could as well suppress the dependence on
ê and define the wavefunction to be a column with 2� + 1 components, depending only on the
three vibrational variables ρ, ϕ, ζ . The energy eigenvalues are

E�m
nλnζ

= E
(0)
nλnζ

+ E
(1)
λ�m E

(0)
nλnζ

= h̄ω

(√
3
(
nζ + 1

2

)
+
√

3
2 (2n + |λ| + 1)

)
(106)

E
(1)
λ�m = h̄ωε2

(
�(� + 1) − m2 + 1

2 (m + λ)2
)
.

In the vibrational ground state n = nζ = λ = 0, (106) reduces to the spectrum of an
axis-symmetric top.

5.2. A simple example with N = 4

Adding one more particle of the same mass to the model of the previous section, we obtain a
system whose classical equilibria are those configurations with the particles lying at relative
rest on the vertices of a regular tetrahedron of side a. The inertia tensor of the equilibrium
configuration is now ma2 diag(1, 1, 1). The constants 	aαi = εajiZαj , a = 1, 2, 3, defining
the Eckart gauge are then normalized to R2

1,2,3 = ma2.
This system, unlike that of the previous section, is fully three-dimensional. With

ε =
√

h̄/(mωa2), the O(ε2) perturbation ̂̃H1 does not commute with the zeroth-order
quadratic Hamiltonian, so the O(ε2) corrections to the unperturbed energies must be computed

perturbatively. Diagonalizing ̂̃H1 within eigenspaces of ̂̃H0 is best done numerically, due to
the large accidental degeneracies of the unperturbed levels beyond the ground state. For that
reason, we will restrict ourselves to making only some remarks on the form of the O(ε2)

Hamiltonian.
We have six vibrational normal modes, with normal coordinates {δQa}9

a=4 whose
expressions in terms of the position vectors {δRα} we omit for brevity. The unperturbed
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Hamiltonian is given by (101), with β now running up to 4, a up to 9, and with σ 2
4 = σ 2

5 = 1,
σ 2

6 = σ 2
7 = σ 2

8 = 2 and σ 2
9 = 4. We have N−1

ij = 1/(ma2)δij + O(ε3), and the quantum
potentials V1,2 and the anharmonic corrections to V(2) starting at O(ε3) up to constant terms.
Thus, to O(ε2) the perturbation Hamiltonian is given by the second term in (66), with the
momentum operators of (84). Dropping constant terms, theO(ε2) perturbation can be arranged
in the form

̂̃H1 = ωε2

h̄
(s + Λ)2 + O(ε3) i = h̄

i

9∑
c=4

1

R2
δQci

∂

∂δQc

. (107)

The normal coordinate we call δQ9 corresponds to a vibrational mode Γ9 with 	9αi ∝ Zαi ,
i.e., a dilatation mode. Explicit computation shows that δQ9i = 0, and then [Λ, δQ9] = 0.
We obtain also

[
i,
∑8

a=4 δQ2
a

] = 0, but [i,V(2)] �= 0. The operator Λ is not an angular
momentum operator, as expected on general grounds from (28b), but it turns out to be
proportional to one, [2i, 2j ] = iεijk2k . We cannot give at present necessary and sufficient
conditions a many-body system and a rotating frame must satisfy for Λ, or a multiple thereof,
to be an angular momentum operator.

6. Final remarks

The gauge-invariant approach presented here leads to a general and systematic framework
for the quantization of many-body systems in rotating frames. Our approach
naturally incorporates the notions of time-dependent symmetry transformations (i.e., gauge
transformations), body-frame time-derivatives (covariant derivatives), moving reference
frames defined as functions of the particle positions (gauge conditions) and of reference-
frame singularities (Gribov ambiguities) in a most economical way. It is not, therefore, a
superfluous formal structure imposed on the physics. The amount of formalism that has been
introduced is in fact minimal. Rather, we put all those notions within a consistent mathematical
framework.

We have shown that the rotational symmetry of an N-body system is a gauge symmetry,
if we restrict ourselves to a fixed angular momentum sector (equation (3)). Using gauge
invariance, we formulated both the classical and quantum theory (in the operator approach)
in rotating frames defined by linear gauge conditions. In particular, we explicitly obtained
the Hamiltonian operator (42) in terms of position vectors referred to the rotating frame,
therefore constrained by the gauge conditions. We also showed that the orientational degrees
of freedom can be eliminated from the formalism, and computed the Hamiltonian operator and
the inner product within the corresponding reduced Hilbert space (equations (46) and (56),
respectively). A further simplification is obtained by eliminating the Jacobian from the kinetic
energy and the inner product, leading to the form (66) for the Hamiltonian, including the
quantum potentials V1,2 of (65), and (68) for the inner product. The Hamiltonian (66), being
Weyl ordered, can be associated with a generating functional in the path-integral approach
with mid-point discretization. Those results were extended in section 4 to the translation-
invariant case, where the system is further reduced by eliminating the centre of mass degrees
of freedom. The particular case of quasi-rigid systems was discussed in section 5.

The results given in the foregoing apply to a very general class of models comprising all
N-particle systems in the three-dimensional Euclidean space with rotation-invariant potentials.
The fact that we computed the Hamiltonian operator in terms of position vectors referred
to a rotating frame amounts to a purely conventional choice of coordinates. Once the
Hamiltonian has been given in those coordinates it is straightforward to transform it to
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any other coordinate set, as done in sections 5.1 and 5.2, there being no need to compute
it again. For simplicity, however, we restricted ourselves to systems with spin-independent
interactions. The extension of the formalism to include dynamical spin degrees of freedom
should in principle be straightforward. We note, in this respect, that in order to obtain half-
integer values for the total angular momentum of the N-particle system, when appropriate, we
should substitute the rigid rotator in (1) by a ‘rotator’ with a half-integer angular momentum.
We did not consider, either, those cases in which it is not possible, or desirable, to impose three
gauge conditions depending only on particle coordinates. Among those are, e.g., one-particle
systems (including translation-invariant two-particle systems), for which the gauge conditions
RY = RZ = 0 = ξ̃X lead to a description in spherical coordinates, and the conditions
RY = 0 = ξ̃X = ξ̃Y to cylindrical coordinates. The case of reference frames defined by gauge
conditions of a more general form than those considered in the previous sections can also be
treated by the methods discussed in this paper.
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Appendix A. The Laplacian in configuration space

The kinetic energy of the system of particles considered in section 3 is proportional to the
Laplacian in the configuration space ∇2

q = ∑3N
a=1 ∂2

/
∂q2

a , with the generalized coordinates
{qa}3N

a=1 defined in (31). In this appendix, we compute the expression for ∇2
q in curvilinear

coordinates {Qa}3N
a=1 defined as follows. For 1 � a � 3,Qa ≡ θa , with θa parametrizing U in

(12), and {Qa}3N
a=4 defined by (32). The relation between the two sets of coordinates is given

implicitly by (31) and (32). ∇2
q is then given by the standard expression

∇2
q =

3N∑
a,b=1

1

J

∂

∂Qa

M−1
ab J

∂

∂Qb

Mab ≡
3N∑
c=1

∂qc

∂Qa

∂qc

∂Qb

(A.1)

M−1
ab =

3N∑
c=1

∂Qa

∂qc

∂Qb

∂qc

J ≡ det

(
∂q

∂Q

)
= (det(M ))1/2.

In order to obtain an explicit expression for ∇2
q we have to build the matrix M−1

ab .

For 1 � a � 3 we have ∂Qa/∂qc ≡ ∂θa/∂qc =∑N
α=1(∂rαj /∂qc)(∂θa/∂rαj ). From (13),

we have

∂θa

∂rαj

= 1

2
−1

ia εmik

∂Uml

∂rαj

Ukl = −−1
ia

3∑
b=1

Q
−1
ib mα	bαkUkj (A.2)

where in the second equality we used (16). Thus,

∂θa

∂qc

= −
N∑

α=1

3∑
b=1

mα

Rc

	cαj	bαk
−1
ia Q

−1
ib Ukj . (A.3)

For 4 � a � 3N we have, from (31),

∂Qa

∂rαj

=
N∑

β=1

mα

R2
	aβi

∂Rβi

∂rαj

= mα

R2
	aαiUij −

3∑
d=1

QaiQ
−1
id

mα

R2
	dαkUkj (A.4)
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where the last equality follows directly from (15) and (16). Note that, by definition, Q
−1
id is a

3 × 3 matrix inverse to Qai with 1 � a � 3, but in general QaiQ
−1
id �= δad if 4 � a � 3N like

in the last term in (A.4). With (A.4) and (31), we obtain

∂Qa

∂qc

=
N∑

α=1

mα

R2
	aαiUij

	cαj

Rc

−
N∑

α=1

3∑
d=1

QakQ
−1
kd

mα

R2
	dαiUij

	cαj

Rc

. (A.5)

The matrix elements M−1
ab can now be computed, starting with their definition (A.1), and using

the orthogonality and completeness relations (30), and the definition (9) of Qai .
For 1 � a, b � 3, we get

M−1
ab =

3N∑
c=1

∂θa

∂qc

∂θb

∂qc

= −1
ia −1

jb

3∑
d=1

R2
dQ

−1
id Q

−1
jd = −1

ia −1
jb N

−1
ij (A.6)

with N −1 defined by the last equality (compare (34)). For 1 � a � 3, 4 � b � 3N , we get

M−1
ab =

3N∑
c=1

∂θa

∂qc

∂Qb

∂qc

= 1

R2
−1

ia QbjN−1
ij . (A.7)

The case 4 � a � 3N, 1 � b � 3 follows from (A.7) by the symmetry of M−1
ab . Finally, for

4 � a, b � 3N

M−1
ab =

3N∑
c=1

∂Qa

∂qc

∂Qb

∂qc

= 1

R2
δab +

1

R4
QaiQbjN−1

ij . (A.8)

M−1
ab is given by (A.6)–(A.8) in four blocks

( 3×3 3×(3N−3)

(3N−3)×3 (3N−3)×(3N−3)

)

M−1 =
(

Λ−1tN −1Λ−1 Λ−1tN −1Qt /R2

QN −1Λ−1/R2 1/R2 + QN −1Qt /R4

)

=
(

Λ−1t 0

Q/R2 N 1
2

)(
N −1 0

0 N −1/R2

)(
Λ−1 Qt /R2

0 N 1
2

)
. (A.9)

From the last equality we obtain J = R3||J , with || = det(Λ) and J = (det(N ))1/2.
Substituting (A.9) and J into (A.1) we obtain ∇2

q = −2(HN − V), with HN given by (33).

A.1. Reduced Laplacian and Weyl ordering

In order to eliminate the factors of J from ∇2
q in (A.1), and to Weyl order it, we write

∇̃2
q ≡ J 1/2∇2

qJ
−1/2

=
3N∑

a,b=1

(
M−1

ab

∂2

∂Qa∂Qb

+
∂M−1

ab

∂Qa

∂

∂Qb

)
− 1

J 1/2

3N∑
a,b=1

(
∂

∂Qa

(
M−1

ab

∂J 1/2

∂Qb

))
. (A.10)

Defining the Weyl-ordered differential operator,(
M−1

ab

∂

∂Qa

∂

∂Qb

)
W

= 1

4
M−1

ab

∂

∂Qa

∂

∂Qb

+
1

4

∂

∂Qa

M−1
ab

∂

∂Qb

+
1

4

∂

∂Qb

M−1
ab

∂

∂Qa

+
1

4

∂

∂Qa

∂

∂Qb

M−1
ab (A.11)
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(A.10) becomes

∇̃2
q =

3N∑
a,b=1

(
M−1

ab

∂

∂Qa

∂

∂Qb

)
W

− 1

4

3N∑
a,b=1

∂2M−1
ab

∂Qa∂Qb

−
3N∑

a,b=1

1

J 1/2

(
∂

∂Qa

(
M−1

ab

∂J 1/2

∂Qb

))
.

(A.12)

The last two terms on the rhs are multiplicative operators which, up to a constant factor,
constitute the quantum potential. The last one can be considerably simplified by using the
second line of (A.1) to write

−
3N∑

a,b=1

1

J 1/2

(
∂

∂Qa

(
M−1

ab

∂J 1/2

∂Qb

))
= 1

2

3N∑
a,b,c=1

1

J 1/2

∂

∂Qa

(
∂Qa

∂qc

J 1/2

(
∂

∂Qb

∂Qb

∂qc

))

=
3N∑

a,b,c=1

1

2

(
∂

∂Qa

∂Qa

∂qc

)(
∂

∂Qb

∂Qb

∂qc

)
+

1

2

∂Qa

∂qc

(
∂2

∂Qa∂Qb

∂Qb

∂qc

)

+
1

4

∂Qa

∂qc

(
∂

∂Qb

∂Qb

∂qc

) 3N∑
c′,d=1

∂Qd

∂qc′

(
∂

∂Qa

∂qc′

∂Qd

) (A.13)

where for the last equality we used the analogue of (35),

∂J

∂Qa

= J

3N∑
c,d=1

∂Qd

∂qc

(
∂

∂Qa

∂qc

∂Qd

)
. (A.14)

The last term in (A.13) can be simplified using

3N∑
c′,d=1

∂Qd

∂qc′

(
∂

∂Qa

∂qc′

∂Qd

)
= −

3N∑
c′,d=1

(
∂

∂Qa

∂Qd

∂qc′

)
∂qc′

∂Qd

and
3N∑
a=1

∂Qa

∂qc

(
∂

∂Qa

∂Qd

∂qc′

)
=

3N∑
a=1

∂Qa

∂qc′

(
∂

∂Qa

∂Qd

∂qc

)
to obtain

(A.13) =
3N∑

a,b,c=1

(
1

4

(
∂

∂Qa

∂Qa

∂qc

)(
∂

∂Qb

∂Qb

∂qc

)
+

1

2

∂Qa

∂qc

(
∂2

∂Qa∂Qb

∂Qb

∂qc

))
. (A.15)

The second term on the rhs of (A.12) can be rewritten as

−1

4

3N∑
a,b=1

∂2M−1
ab

∂Qa∂Qb

= −1

4

3N∑
a,b,c=1

(
2

(
∂2

∂Qa∂Qb

∂Qa

∂qc

)
∂Qb

∂qc

+

(
∂

∂Qb

∂Qa

∂qc

)(
∂

∂Qa

∂Qb

∂qc

)

+

(
∂

∂Qa

∂Qa

∂qc

)(
∂

∂Qb

∂Qb

∂qc

))
. (A.16)

Thus, finally, substituting (A.15) and (A.16) into (A.12),

∇̃2
q =

3N∑
a,b=1

(
M−1

ab

∂

∂Qa

∂

∂Qb

)
W

− 1

4

3N∑
a,b,c=1

(
∂

∂Qb

∂Qa

∂qc

)(
∂

∂Qa

∂Qb

∂qc

)
. (A.17)
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A.2. The quantum potential

The kinetic energy in (58) is −1/2∇̃2
q . Thus, from (A.17) we have

VQ = 1

8

3N∑
a,b,c=1

(
∂

∂Qb

∂Qa

∂qc

)(
∂

∂Qa

∂Qb

∂qc

)
. (A.18)

The evaluation of VQ is straightforward, though rather laborious. We closely follow the
analogous computation of [6], which leads to a compact expression for VQ. In order to
compute VQ we split it into three terms,

VQ = VQ0 + VQ1 + VQ2 VQ0 = 1

8

3N∑
a,b=4

3N∑
c=1

(
∂

∂Qa

∂Qb

∂qc

)(
∂

∂Qb

∂Qa

∂qc

)

VQ1 = 1

4

3∑
a=1

3N∑
b=4

3N∑
c=1

(
∂

∂θa

∂Qb

∂qc

)(
∂

∂Qb

∂θa

∂qc

)
(A.19)

VQ2 = 1

8

3∑
a,b=1

3N∑
c=1

(
∂

∂θa

∂θb

∂qc

)(
∂

∂θb

∂θa

∂qc

)
which we consider separately.

A.2.1. VQ0 . From (A.5), we get ∂Qb/∂qc and thence,(
∂

∂Qa

∂Qb

∂qc

)
= −

N∑
β=1

	cβn

Rc

3∑
d=1

mβ

R2
	dβsUsn

(
∂

∂Qa

QbgQ
−1
gd

)
. (A.20)

Substituting this expression, and the corresponding one with a, b interchanged, into VQ0 and
using the completeness and orthogonality relations (30) and (40), we get

VQ0 = −1

8

3N∑
a,b=4

N∑
β,γ=1

3∑
d=1

R2
d

R4
	aβl	bγ l′

(
PβlQbgQ

−1
gd

) (
Pγ l′QamQ

−1
md

)
. (A.21)

In (A.21), we can extend the summations over a and b down to 1, due to (24). Expanding the
definitions (9) of Qbg and Qam and using completeness (30)

VQ0 = −1

8

N∑
β,γ=1

3∑
d=1

R2
dεl′gsεlmp

(
PβlRγ sQ

−1
gd

) (
Pγ l′RβpQ

−1
md

)
. (A.22)

It is not difficult to check that if in this equation we expand expression (29) for Pβl and Pγ l′ ,
the contribution due to the second term in (29) vanishes, and we get

VQ0 = 1

8

N∑
β,γ=1

3∑
d=1

R2
dεl′gsεlmp

(
∂

∂Rβl

Rγ sQ
−1
gd

)(
∂

∂Rγ l′
RβpQ

−1
md

)
. (A.23)

Using the definition (9) of Qai , the derivatives can be evaluated to give
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∂

∂Rβl

Rγ sQ
−1
gd

)
=
(

δβγ δslδgk − Rγs

3∑
a=1

Q−1
ga mβ	aβnεnkl

)
Q

−1
kd (A.24)

and similarly
(
∂/∂Rγ l′RβpQ

−1
md

)
. Thus,

VQ0 = 1

8

N∑
β,γ=1

(
3∑

d=1

R2
dQ

−1
kd Q

−1
hd

)
εl′gsεlmp

(
δβγ δslδgk − Rγs

3∑
a=1

Q−1
ga mβ	aβnεnkl

)

×
(

δβγ δpl′δmh − Rβp

3∑
b=1

Q
−1
mbmγ 	bγn′εn′hl′

)
. (A.25)

Identifying the first parenthesis in this expression with N−1
kh as defined in (34), it is

straightforward to rearrange the factors to obtain VQ0 = V2, with V2 given in (65).

A.2.2. VQ1 and VQ2 . With the derivatives ∂θa/∂qc given in (A.3), using the completeness
relation (30) we easily get

VQ2 = 1

8

3∑
a,b=1

N∑
α=1

3∑
d1,d2=1

mα	d1αk	d2αpQ
−1
ld1

Q
−1
qd2

(
∂

∂θa

−1
qb Upj

)(
∂

∂θb

−1
la Ukj

)
. (A.26)

We can write the derivatives ∂U/∂θa in terms of ai using (13) to obtain the expanded form

VQ2 = 1

8

3∑
a,b=1

(
3∑

d=1

R2
dQ

−1
ld Q

−1
qd

)
∂−1

qb

∂θa

∂−1
la

∂θb

+
1

8

3∑
a,b=1

N∑
α=1

×
3∑

d1,d2=1

mα	d1αk	d2αpQ
−1
ld1

Q
−1
qd2

εksp

(
∂−1

qb

∂θa

−1
la bs − ∂−1

la

∂θb

−1
qb as

)

+
1

8

N∑
α=1

3∑
d1,d2=1

mα	d1αk	d2αpQ
−1
ld1

Q
−1
qd2

εplrεkqr . (A.27)

The second line can be evaluated from the commutators (19), [Li, Lj ] = −iεijkLk .
Substituting into these commutators expression (22) for Li , we are led to

3∑
d=1

(
−1

jd

∂−1
ic

∂θd

− −1
id

∂−1
jc

∂θd

)
= εijk

−1
kc . (A.28)

Thus, (A.27) can be rewritten as

VQ2 = 1

8

3∑
a,b=1

N−1
lq

∂−1
qb

∂θa

∂−1
la

∂θb

+
1

8

N∑
α=1

3∑
d1,d2=1

mα	d2αnQ
−1
qd2

(εnlrεkqr + εqll′εkl′n)Q
−1
ld1

	d1αk. (A.29)

The factor in parenthesis in the second term equals εnql′εkll′ , but we will refrain from
simplifying it. After renaming dummy indices, we can rewrite (A.29) as

VQ2 = 1

8

3∑
a,a′=1

N−1
ll′

∂−1
l′a′

∂θa

∂−1
la

∂θa′

+
1

8

N∑
α=1

mα

3∑
d1,d2=1

(
Q

−1
l′d2

	d2αqεqln − εl′lqQ
−1
qd2

	d2αn

)
Q

−1
ld1

	d1αkεkl′n (A.30)

which is exactly analogous to (6.8) of [6].



6804 A O Bouzas and J Méndez Gamboa

With the derivatives (A.3) and (A.5), and using completeness (30), we can write

VQ1 = −1

4

3∑
a=1

3N∑
b=4

N∑
α=1

mα

R2

(
	bαr −

3∑
d2=1

QbqQ
−1
qd2

	d2αr

)
∂Url

∂θa

3∑
d1=1

	d1αn
−1
l′a Unl

∂Q
−1
l′d1

∂Qb

.

(A.31)

The derivative ∂Url/∂θa can be written in terms of ai with (13). On the other hand, using
(39) to write ∂Q

−1
l′d1

/
∂Qb in terms of ∂Q

−1
l′d1

/
∂Rβl and evaluating the latter from (9), we arrive

at

VQ1 = −1

4

N∑
α,β=1

(
3∑

c,d1=1

Q
−1
l′c 	cβpεplm

) (
Q

−1
md1

	d1αn

) 3N∑
b=4

mαmβ

R2
	bβl

×
(

	bαr −
3∑

d2=1

QbqQ
−1
qd2

	d2αr

)
εrl′n. (A.32)

Expanding Qbq and using completeness to evaluate the sum over b, with Dβ

lq defined in (59)
we get

VQ1 = −1

4

N∑
α,β=1

mα

3∑
c,d1=1

(
Q

−1
l′c 	cβpεplm

) (
Q

−1
md1

	d1αn

) (
δαβδlr −

3∑
d2=1

mβDβ

lqQ
−1
qd2

	d2αr

)
εrl′n

(A.33)

an expression which is exactly analogous to equation (6.10) of [6]. Combining this last
expression for VQ1 and (A.29) for VQ2, we can write

VQ1 + VQ2 = 1

8

3∑
a,a′=1

N−1
ll′

∂−1
l′a′

∂θa

∂−1
la

∂θa′
− 1

8

N∑
α=1

mα

3∑
c,d=1

Q
−1
l′c 	cαlQ

−1
md	dαn(εnl′pεplm + εnlpεpl′m)

− 1

4

N∑
α,β=1

mαmβ

3∑
c,d1=1

Q
−1
l′c 	cβpεplmQ

−1
md1

	d1αrεrl′n

3∑
d2=1

Dβ

lqQ
−1
qd2

	d2αn. (A.34)

The summand on the second line of this equation is the product of
(
εplmDβ

lq

)
times an expression

antisymmetric in m and q. Thus, we can replace
(
εplmDβ

lq

) → 1/2
(
εplmDβ

lq − εplqDβ

lm

) =
1/2εqlmDβ

lp, and the second line of (A.34) becomes

−1

8

 N∑
β=1

mβ

3∑
c=1

Q
−1
l′c 	cβpDβ

lp

 εqlm

N∑
α=1

mα

3∑
d1,d2=1

Q
−1
md1

	d1αrεrl′nQ
−1
qd2

	d2αn. (A.35)

From the definitions (59) and (9), we see that the factor within parentheses in (A.35) reduces
to (−δll′). Making that simplification in (A.35) and substituting the result for the second line
of (A.34), we finally get

VQ1 + VQ2 = 1

8

3∑
a,a′=1

N−1
ll′

∂−1
l′a′

∂θa

∂−1
la

∂θa′
+ V1 (A.36)

with V1 given by (65).
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Appendix B. Affine transformations and covariant derivatives

The transformations (69) do not depend on rα linearly but affinely, i.e., (c1rα + c2rβ)′ =
c1rα

′ + c2rβ
′ iff c1 + c2 = 1. Covariant derivatives are defined so that they transform under

time-dependent transformations in the same way as ordinary derivatives transform under time-
independent transformations. Thus, we define Dtrα as in (70), so that (Dtrα)′ = UDtrα , but
Dt(c1rα + c2rβ) = c1Dtrα + c2Dtrβ iff c1 + c2 = 1. Similarly, the rule for the derivative of a
vector product is not the usual one, Dt(rα ∧ rβ) = (Dtrα) ∧ rβ + rα ∧ (Dtrβ) + (rα − rβ) ∧
ρ − ρ. Since Dtrα transforms linearly under gauge transformations, we define

DtDtrα ≡ d

dt
(Dtrα) − ξ(Dtrα) (DtDtrα)′ = UDtDtrα. (B.1)

With (70) and (B.1), the equations of motion from Lagrangian (72) take the form mαDtDtrα =
−∇αV as in (4).

With the definition (5) for the angular momentum l and the transformation law (69) we
have l′ = Ul+Mu∧ (UDtrcm), with rcm the centre of mass position vector. Thus, we define

Dt l ≡ l̇ − ξl − Mρ ∧ (Dtrcm) (B.2)

so that (Dt l)
′ = UDt l + Mu ∧ (UDtDtrcm) with DtDtrcm defined as in (B.1) and (70). The

centre of mass angular momentum lcm = Mrcm ∧Dtrcm transforms in the same way as l, and
its covariant derivative is defined as in (B.2). From the equations of motion for rα, we then
get

Dt l = 0 DtDtrcm = 0 Dt lcm = 0. (B.3)

Therefore, Dt l − Dt lcm = (d/dt − ξ)(l − lcm) = 0, which is (73) and which, together
with the antisymmetry of ξ, immediately leads to d/dt (l − lcm)2 = 0. Furthermore,
(l − lcm)′ = U (l − lcm) so that (l − lcm)2 is invariant under gauge transformations, i.e.,
frame independent.

References

[1] Méndez Gamboa J and Bouzas A 2003 J. Phys. A: Math. Gen. 36 7061
[2] Lee T D 1981 Particle Physics and Introduction to Field Theory (London: Harwood Academic)
[3] Lenz F and Wörlen S 2001 Compact Variables and Singular Fields in QCD (At the Frontier of Particle Physics

vol 2) ed M Shifman (Singapore: World Scientific) (Preprint hep-ph/0010099)
[4] Bes D and Kurchan J 1990 The Treatment of Collective Coordinates in Many-Body Systems (Singapore: World

Scientific)
[5] Villars F and Cooper G 1970 Ann. Phys., NY 56 224
[6] Christ N H and Lee T D 1980 Phys. Rev. D 22 939
[7] Littlejohn R and Reinsch M 1997 Rev. Mod. Phys. 69 213
[8] Meremianin A V and Briggs J S 2003 Phys. Rep. 384 121
[9] Louck J and Galbraith H 1976 Rev. Mod. Phys. 48 69

[10] Biedenharn L C and Louck J D 1981 Angular Momentum in Quantum Physics (Reading, MA: Addison-Wesley)
[11] Gribov V N 1978 Nucl. Phys. B 139 1
[12] Eckart C 1935 Phys. Rev. 47 552
[13] Mills R L and Yang C N 1954 Phys. Rev. 96 191
[14] Landau L and Lifshitz E 1996 Mechanics (Woburn, MA: Butterworth-Heinemann)
[15] Barger V and Olsson M 1973 Classical Mechanics: A Modern Perspective (New York: McGraw-Hill)
[16] Dirac P A M 2001 Lectures on Quantum Mechanics (Mineola, NY: Dover)
[17] Gervais J L and Sakita B 1978 Phys. Rev. D 18 453
[18] Creutz M, Muzinich I J and Tudron T N 1979 Phys. Rev. D 19 531
[19] Faddeev L and Popov V 1967 Phys. Lett. B 25 29
[20] Galindo A and Pascual P 1990 Quantum Mechanics vols 2 (New York: Springer)
[21] Creutz M 1985 Quarks, Gluons and Lattices (New York: Cambridge University Press)


